Status calibration of pulse shaping system for the high power laser facility based on deep learning

光学 校准 激光器 脉搏(音乐) 功率(物理) 脉冲整形 计算机科学 物理 探测器 量子力学
作者
Wen‐Jone Chen,Xinghua Lu,Xiaochao Wang,W. J. Fan
出处
期刊:Optics Express [The Optical Society]
卷期号:33 (10): 21776-21795
标识
DOI:10.1364/oe.563586
摘要

To achieve high-precision and high-efficiency laser pulse shaping in the front-end system of high-power laser facilities, this paper proposes a deep learning model aimed at calibrating the initial operational status of the pulse shaping closed-loop control system. The model swiftly establishes a nonlinear mapping between the designed optical waveforms and the shaping electrical signals generated by the arbitrary waveform generator (AWG). The proposed model employs a U-shaped structure integrated with residual connections as its core network. An attention mechanism comprising the Kolmogorov-Arnold Network (KAN) and the temporal convolution network (TCN) between the model's input and output layers. The dataset constructed based on the pulse waveforms collected by the front-end system of the SG-II facility is used to train and test the model. The RMSEs between the predicted AWG waveforms and the targets are less than 5%, as well as the input complex waveforms and the waveforms with a high contrast of 100:1. The RMSEs for waveforms of different shapes and contrasts are less than 3%. The method can rapidly invert AWG shaping electrical signals by optical waveforms with different shapes, pulse widths and contrasts. Based on the model, the output optical waveforms closely approximate the design target in the initial iteration of the closed-loop control system, which will improve accuracy and efficiency of the pulse shaping system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fire发布了新的文献求助20
刚刚
暮色晚钟发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
moonlight发布了新的文献求助10
2秒前
leyellows完成签到 ,获得积分10
2秒前
YANG发布了新的文献求助10
2秒前
佳丽发布了新的文献求助10
2秒前
harri发布了新的文献求助10
3秒前
3秒前
oneonlycrown完成签到,获得积分10
6秒前
虚幻德地完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
SMIRTGIRL发布了新的文献求助10
7秒前
Liu发布了新的文献求助10
8秒前
华仔应助limz采纳,获得30
8秒前
852应助lily采纳,获得10
9秒前
小姜糖发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助50
10秒前
打打应助Jsy采纳,获得10
12秒前
12秒前
XIAODI完成签到,获得积分10
12秒前
13秒前
li完成签到 ,获得积分10
13秒前
科研通AI2S应助船夫采纳,获得10
13秒前
13秒前
Lucas应助勤奋尔烟采纳,获得10
15秒前
16秒前
Criminology34应助bayes111采纳,获得10
17秒前
SMIRTGIRL完成签到,获得积分10
17秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
21秒前
22秒前
zyx发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5806738
求助须知:如何正确求助?哪些是违规求助? 5858093
关于积分的说明 15519620
捐赠科研通 4931650
什么是DOI,文献DOI怎么找? 2655381
邀请新用户注册赠送积分活动 1601946
关于科研通互助平台的介绍 1557025