亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using pretrained models in ensemble learning for date fruits multiclass classification

人工智能 集成学习 卷积神经网络 计算机科学 模式识别(心理学) 上下文图像分类 稳健性(进化) 机器学习 集合预报 深度学习 F1得分 图像(数学) 生物化学 基因 化学
作者
Murat Eser,Metin Bi̇lgi̇n,Elham Tahsin Yasin,Murat Köklü
出处
期刊:Journal of Food Science [Wiley]
卷期号:90 (3)
标识
DOI:10.1111/1750-3841.70136
摘要

Date fruits are a primary agricultural product that comes in a variety of textures, colors, and tastes; hence, the correct classification is crucial for quality control, automatic sorting, and commercial applications. Deep learning has surely shown critically improved image classification duties. In this research, the classification of nine different date fruit types by means of four well-known convolutional neural networks (CNNs), that is, DenseNet121, MobileNetV2, ResNet18, and VGG16 as well as an ensemble learning approach was objected. It is evaluated the proposed Dirichlet Ensemble which entails the predictions from the individual CNN models and the baseline architecture across multiple epochs. Toward the assessment, the accuracy, precision, recall, and F1-score were used. The results of the experiments revealed that the Dirichlet Ensemble is better than any single model out there with an accuracy of 98.61%, precision of 98.71%, recall of 98.61%, and an F1-score of 98.62%. DenseNet121 and MobileNetV2 were the standalone models with the highest accuracy of 96.92% and 95.83%, respectively, which is why they are very useful for a limited computing system. ResNet18 was by far the best model with a final accuracy of 92.35% and even outperformed VGG16 by 16%. VGG16's unsatisfactory performance with an accuracy of 73.24% clearly indicates its inability to handle complex classification tasks. The present work also showed the effectiveness of ensemble learning in enhancing the accuracy and robustness of classification. Future research could be investigating more advanced ensemble strategies and fine-tuning techniques to improve the generalization of modeling in food classification applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术通zzz发布了新的文献求助10
1秒前
31秒前
一颗忧伤的覆盆子完成签到,获得积分10
32秒前
科研通AI5应助duoduoqian采纳,获得10
36秒前
36秒前
平淡的翅膀完成签到 ,获得积分10
37秒前
E7完成签到,获得积分10
42秒前
43秒前
黎aimomo发布了新的文献求助50
56秒前
1分钟前
1分钟前
学术通zzz发布了新的文献求助10
1分钟前
present完成签到,获得积分20
1分钟前
duoduoqian发布了新的文献求助10
1分钟前
星辰大海应助duoduoqian采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
seven发布了新的文献求助10
1分钟前
seven完成签到,获得积分20
1分钟前
沉静茗完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
发个15分的完成签到 ,获得积分10
3分钟前
熊啊发布了新的文献求助10
3分钟前
小二郎应助wawa采纳,获得10
4分钟前
黎aimomo完成签到,获得积分10
4分钟前
4分钟前
wawa发布了新的文献求助10
4分钟前
今后应助晓豪采纳,获得10
4分钟前
小蘑菇应助wawa采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得10
5分钟前
SDF完成签到,获得积分10
5分钟前
在水一方应助靓丽寄文采纳,获得30
5分钟前
5分钟前
翟翟发布了新的文献求助10
5分钟前
SDF发布了新的文献求助30
5分钟前
5分钟前
靓丽寄文发布了新的文献求助30
5分钟前
传奇3应助育种小杰采纳,获得10
6分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359351
关于积分的说明 10402190
捐赠科研通 3077174
什么是DOI,文献DOI怎么找? 1690218
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713