Application of machine learning in higher education to predict students’ performance, learning engagement and self-efficacy: a systematic literature review

机器学习 人工智能 实证研究 计算机科学 系统回顾 支持向量机 随机森林 数据科学 数学 统计 梅德林 政治学 法学
作者
Juntao Chen,Xiaodeng Zhou,Jiahua Yao,Su-Kit Tang
出处
期刊:Asian Education and Development Studies [Emerald Publishing Limited]
标识
DOI:10.1108/aeds-08-2024-0166
摘要

Purpose In recent years, studies have shown that machine learning significantly improves student performance and retention and reduces the risk of student dropout and withdrawal. However, there is a lack of empirical research reviews focusing on the application of machine learning to predict student performance in terms of learning engagement and self-efficacy and exploring their relationships. Hence, this paper conducts a systematic research review on the application of machine learning in higher education from an empirical research perspective. Design/methodology/approach This systematic review examines the application of machine learning (ML) in higher education, focusing on predicting student performance, engagement and self-efficacy. The review covers empirical studies from 2016 to 2024, utilizing a PRISMA framework to select 67 relevant articles from major databases. Findings The findings show that ML applications are widely researched and published in high-impact journals. The primary functions of ML in these studies include performance prediction, engagement analysis and self-efficacy assessment, employing various ML algorithms such as decision trees, random forests, support vector machines and neural networks. Ensemble learning algorithms generally outperform single algorithms regarding accuracy and other evaluation metrics. Common model evaluation metrics include accuracy, F1 score, recall and precision, with newer methods also being explored. Research limitations/implications First, empirical research literature was selected from only four renowned electronic journal databases, and the literature was limited to journal articles, with the latest review literature and conference papers published in the form of conference papers also excluded, which led to empirical research not obtaining the latest views of researchers in interdisciplinary fields. Second, this review focused mainly on the analysis of student grade prediction, learning engagement and self-efficacy and did not study students’ risk, dropout rates, retention rates or learning behaviors, which limited the scope of the literature review and the application field of machine learning algorithms. Finally, this article only conducted a systematic review of the application of machine learning algorithms in higher education and did not establish a metadata list or carry out metadata analysis. Originality/value The review highlights ML’s potential to enhance personalized education, early intervention and identifying at-risk students. Future research should improve prediction accuracy, explore new algorithms and address current study limitations, particularly the narrow focus on specific outcomes and lack of interdisciplinary perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助roaring采纳,获得10
1秒前
棖0921发布了新的文献求助10
5秒前
5秒前
weddcf发布了新的文献求助10
5秒前
Rena关注了科研通微信公众号
7秒前
hayden完成签到 ,获得积分10
7秒前
冰魂应助风华正茂采纳,获得10
7秒前
FashionBoy应助wltwb采纳,获得10
7秒前
7秒前
深情安青应助小周采纳,获得10
8秒前
我我我发布了新的文献求助10
11秒前
12秒前
FashionBoy应助醒醒采纳,获得10
12秒前
合适的安卉完成签到,获得积分10
13秒前
Dr_zhangkai完成签到,获得积分20
14秒前
15秒前
16秒前
16秒前
17秒前
malistm完成签到,获得积分10
17秒前
Rao发布了新的文献求助10
18秒前
hcjxj完成签到,获得积分10
18秒前
20秒前
Steven发布了新的文献求助30
20秒前
malistm发布了新的文献求助10
22秒前
22秒前
roaring发布了新的文献求助10
23秒前
jianhua发布了新的文献求助10
24秒前
Rao完成签到,获得积分10
24秒前
24秒前
Dawn完成签到 ,获得积分10
27秒前
科研通AI5应助roaring采纳,获得10
27秒前
周粥关注了科研通微信公众号
28秒前
28秒前
潇洒的盼烟完成签到,获得积分10
29秒前
诺诺发布了新的文献求助10
29秒前
高震博发布了新的文献求助10
31秒前
weddcf发布了新的文献求助30
31秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358