Triple-Scale Structure-Induced Efficient Passive Radiative Cooling Combining Robust Anticondensation

辐射冷却 比例(比率) 被动冷却 材料科学 辐射传输 环境科学 物理 气象学 光学 热的 量子力学
作者
Zehong Zhao,Chun’an Tang,Enming Cui,Ningning Sun,J. Zhou,Jiancheng Lv,Lei Zhao,Yahua Liu,Shile Feng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (20): 19384-19393 被引量:4
标识
DOI:10.1021/acsnano.5c03434
摘要

Passive radiative cooling holds promise for achieving subambient cooling without consuming energy, facilitated by emitting thermal radiation into cosmic space. However, previous approaches, focusing heavily on aligning structural scales with optical properties, have struggled with effective anticondensation, thus limiting their applicability in high-humidity or supercooled conditions. Here, we demonstrate a design that enables efficient passive radiative cooling while maintaining robust anticondensation performance, underpinned by a triple-scale structure comprising microscale polymer particles, submicrometer-scale interparticle gaps, and nanoscale pores on the particle surfaces. This design achieves an efficient sunlight reflectance of 0.98 and high mid-infrared emissivity of 0.91 driven by the triple-scale structure-enhanced Mie scattering and chemical bond vibrations in polymer materials, respectively, enabling a 10.9 °C subambient cooling under direct sunlight at ∼40% relative humidity. Notably, even at a high relative humidity of ∼70%, our design still manifests an average cooling of ∼4 °C compared to ambient temperature, quite exceeding that of traditional radiative cooling materials. This is attributed to the robust anticondensation performance characterized by a maximum droplet shedding radius of ∼47.6 μm and a condensation droplet coverage of ∼32.4%, attributed to the triple-scale structure-induced larger Laplace pressure force and smaller adhesion. Moreover, our design demonstrates robust durability, encompassing self-cleaning performance via condensing droplets, thermal stability below 500 °C, and antiultraviolet radiation above 100 h, which exhibits potential applications in thermal management in various extreme scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝天应助9979采纳,获得10
4秒前
polly发布了新的文献求助10
5秒前
迷失的悠悠完成签到,获得积分10
5秒前
5秒前
kuku完成签到 ,获得积分10
6秒前
无敌橙汁oh完成签到 ,获得积分10
6秒前
无限煎饼发布了新的文献求助20
6秒前
9秒前
WanWanYUE完成签到 ,获得积分10
10秒前
善学以致用应助顶天立地采纳,获得10
11秒前
科研通AI6.1应助蝌蚪采纳,获得10
12秒前
勤恳洙应助谢某某102097采纳,获得20
13秒前
AryaZzz完成签到 ,获得积分10
13秒前
13秒前
梅痕公子发布了新的文献求助10
16秒前
xxx完成签到 ,获得积分10
16秒前
齐济完成签到 ,获得积分10
17秒前
19秒前
科研通AI2S应助sjq采纳,获得10
21秒前
nonory完成签到,获得积分10
23秒前
ku完成签到 ,获得积分10
23秒前
庄严发布了新的文献求助10
24秒前
小马甲应助梅痕公子采纳,获得10
24秒前
科研通AI6.1应助Atoxus采纳,获得10
25秒前
lorentzh完成签到,获得积分10
27秒前
sjq完成签到,获得积分20
28秒前
28秒前
29秒前
敏静完成签到,获得积分10
30秒前
SMG完成签到 ,获得积分10
32秒前
sjq发布了新的文献求助10
35秒前
36秒前
36秒前
anyu完成签到,获得积分10
37秒前
40秒前
40秒前
Atoxus完成签到,获得积分10
41秒前
SJD完成签到,获得积分0
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5841775
求助须知:如何正确求助?哪些是违规求助? 6166428
关于积分的说明 15607934
捐赠科研通 4959015
什么是DOI,文献DOI怎么找? 2673584
邀请新用户注册赠送积分活动 1618487
关于科研通互助平台的介绍 1573557