Dynamic CTA-Based Whole-Brain Arterial-Venous Collateral Assessment for Predicting Futile Recanalization in Acute Ischemic Stroke

医学 抵押品 冲程(发动机) 侧支循环 心脏病学 缺血性中风 内科学 脑缺血 急性中风 重症监护医学 缺血 组织纤溶酶原激活剂 机械工程 财务 工程类 经济
作者
Ruoyao Cao,Yao Lu,Wei Li,Yu Fan,Shen Hu,Kunpeng Chen,Guoxuan Wang,Chengkan Sun,Qingfeng Ma,Miao Zhang,Juan Chen,Jie Lu
出处
期刊:Aging and Disease [Aging and Disease]
标识
DOI:10.14336/ad.2025.0540
摘要

Futile recanalization is a recognized challenge in acute ischemic stroke (AIS) patients after endovascular treatment (EVT). Our purpose was to develop and validate a predictive model for futile recanalization after EVT by integrating arterial-venous collateral assessment with clinical parameters. This study included 392 AIS patients with acute anterior circulation large vessel occlusion who underwent EVT (March 2016-June 2024). Patients were stratified into training (n = 160), internal validation (n = 69), and completely independent external validation (n = 163) cohorts collected from a separate medical center. Predictors were identified using Boruta algorithm and LASSO regression. Multiple machine learning models were evaluated through discrimination, calibration, and decision curve analyses, with SHAP analysis for feature importance. Three independent predictors were identified: age (OR: 1.06, 95% CI: 1.02-1.11), whole-brain arterial collateral status (OR: 0.30, 95% CI: 0.18-0.50), and whole-brain venous collateral status (OR: 0.78, 95% CI: 0.67-0.90). The model demonstrated excellent discrimination in the training cohort (AUC: 0.914, 95% CI: 0.866-0.963), internal validation cohort (AUC: 0.918, 95% CI: 0.844-0.991), and notably maintained robust performance in the completely independent external validation cohort (AUC: 0.755, 95% CI: 0.678-0.832). Calibration plots showed good agreement between predicted and observed outcomes. SHAP analysis further confirmed the importance of arterial and venous collateral status assessments. The integration of whole-brain arterial-venous collateral assessment with clinical parameters shows potential value in predicting futile recanalization after EVT. This model, validated across multiple cohorts, may provide additional information to support clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
秋雨发布了新的文献求助30
2秒前
NONO完成签到,获得积分10
3秒前
Alice发布了新的文献求助20
3秒前
4秒前
于风完成签到,获得积分10
5秒前
星辰大海应助小5采纳,获得10
5秒前
DiJia发布了新的文献求助30
6秒前
6秒前
鹤轩应助苗条的天问采纳,获得10
6秒前
缥缈颦发布了新的文献求助10
6秒前
Orange应助跳跃的翼采纳,获得30
6秒前
量子星尘发布了新的文献求助10
7秒前
上官若男应助和风晓月采纳,获得10
7秒前
8秒前
陈秋禹发布了新的文献求助10
8秒前
8秒前
JD完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
奋斗的梨完成签到,获得积分10
10秒前
JIECHENG发布了新的文献求助10
10秒前
zxzb发布了新的文献求助10
12秒前
惜海发布了新的文献求助10
13秒前
852应助gzz采纳,获得10
13秒前
苗条的天问完成签到,获得积分20
14秒前
SCIER发布了新的文献求助10
15秒前
15秒前
redtom完成签到,获得积分20
15秒前
15秒前
hrzmlily完成签到,获得积分10
16秒前
852应助俊逸随阴采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
大模型应助SCL采纳,获得10
17秒前
18秒前
香蕉觅云应助Alice采纳,获得20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708708
求助须知:如何正确求助?哪些是违规求助? 5189605
关于积分的说明 15254774
捐赠科研通 4861613
什么是DOI,文献DOI怎么找? 2609558
邀请新用户注册赠送积分活动 1560101
关于科研通互助平台的介绍 1517823