已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D Medical image segmentation using parallel transformers

计算机科学 变压器 人工智能 分割 编码器 卷积神经网络 图像分割 模式识别(心理学) 深度学习 计算机视觉 工程类 操作系统 电气工程 电压
作者
Qingsen Yan,Shengqiang Liu,Songhua Xu,Caixia Dong,Zongfang Li,Qinfeng Shi,Yanning Zhang,Duwei Dai
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109432-109432 被引量:58
标识
DOI:10.1016/j.patcog.2023.109432
摘要

Most recent 3D medical image segmentation methods adopt convolutional neural networks (CNNs) that rely on deep feature representation and achieve adequate performance. However, due to the convolutional architectures having limited receptive fields, they cannot explicitly model the long-range dependencies in the medical image. Recently, Transformer can benefit from global dependencies using self-attention mechanisms and learn highly expressive representations. Some works were designed based on the Transformers, but the existing Transformers suffer from extreme computational and memories, and they cannot take full advantage of the powerful feature representations in 3D medical image segmentation. In this paper, we aim to connect the different resolution streams in parallel and propose a novel network, named Transformer based High Resolution Network (TransHRNet), with an Effective Transformer (EffTrans) block, which has sufficient feature representation even at high feature resolutions. Given a 3D image, the encoder first utilizes CNN to extract the feature representations to capture the local information, and then the different feature maps are reshaped elaborately for tokens that are fed into each Transformer stream in parallel to learn the global information and repeatedly exchange the information across streams. Unfortunately, the proposed framework based on the standard Transformer needs a huge amount of computation, thus we introduce a deep and effective Transformer to deliver better performance with fewer parameters. The proposed TransHRNet is evaluated on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that consists of 11 major human organs and the Medical Segmentation Decathlon (MSD) dataset for brain tumor and spleen segmentation tasks. Experimental results show that it performs better than the convolutional and other related Transformer-based methods on the 3D multi-organ segmentation tasks. Code is available at https://github.com/duweidai/TransHRNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助45度人采纳,获得10
2秒前
physicalpicture完成签到,获得积分10
3秒前
Angela完成签到,获得积分10
5秒前
大胆的尔岚完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
9秒前
小雨完成签到,获得积分10
11秒前
叮叮当当当完成签到 ,获得积分10
14秒前
kento完成签到,获得积分0
16秒前
朴实的小萱完成签到 ,获得积分10
17秒前
Loti发布了新的文献求助10
17秒前
心灵美映之完成签到 ,获得积分10
17秒前
爱思考的小笨笨完成签到,获得积分10
18秒前
小月亮完成签到,获得积分10
19秒前
999完成签到,获得积分10
19秒前
djbj2022发布了新的文献求助10
21秒前
小月亮发布了新的文献求助20
22秒前
小蘑菇应助逍遥子0211采纳,获得10
22秒前
川荣李奈完成签到 ,获得积分10
23秒前
彭于晏应助Serena采纳,获得10
25秒前
Leeee完成签到,获得积分10
26秒前
27秒前
深情安青应助唾沫星子采纳,获得10
31秒前
CCC发布了新的文献求助10
31秒前
32秒前
32秒前
小吴要努力科研完成签到 ,获得积分10
33秒前
芜湖起飞完成签到 ,获得积分10
33秒前
zoulanfunny04完成签到 ,获得积分10
33秒前
ZPQ完成签到 ,获得积分10
34秒前
35秒前
思源应助漂亮的泥猴桃采纳,获得10
36秒前
36秒前
后陡门小学生完成签到 ,获得积分10
37秒前
开拖拉机的芍药完成签到 ,获得积分10
39秒前
A晨完成签到 ,获得积分10
40秒前
Criminology34应助岁岁采纳,获得10
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
工学基礎離散数学とその応用[第2版] 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5808130
求助须知:如何正确求助?哪些是违规求助? 5868169
关于积分的说明 15523229
捐赠科研通 4932640
什么是DOI,文献DOI怎么找? 2656161
邀请新用户注册赠送积分活动 1602609
关于科研通互助平台的介绍 1557602