GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models

工资 劳动力 印为红字的 时间轴 劳动经济学 经济 发展经济学 经济增长 社会学 地理 教育学 考古
作者
Tyna Eloundou,Sam Manning,Pamela Mishkin,Daniel L. Rock
出处
期刊:Cornell University - arXiv 被引量:523
标识
DOI:10.48550/arxiv.2303.10130
摘要

We investigate the potential implications of large language models (LLMs), such as Generative Pre-trained Transformers (GPTs), on the U.S. labor market, focusing on the increased capabilities arising from LLM-powered software compared to LLMs on their own. Using a new rubric, we assess occupations based on their alignment with LLM capabilities, integrating both human expertise and GPT-4 classifications. Our findings reveal that around 80% of the U.S. workforce could have at least 10% of their work tasks affected by the introduction of LLMs, while approximately 19% of workers may see at least 50% of their tasks impacted. We do not make predictions about the development or adoption timeline of such LLMs. The projected effects span all wage levels, with higher-income jobs potentially facing greater exposure to LLM capabilities and LLM-powered software. Significantly, these impacts are not restricted to industries with higher recent productivity growth. Our analysis suggests that, with access to an LLM, about 15% of all worker tasks in the US could be completed significantly faster at the same level of quality. When incorporating software and tooling built on top of LLMs, this share increases to between 47 and 56% of all tasks. This finding implies that LLM-powered software will have a substantial effect on scaling the economic impacts of the underlying models. We conclude that LLMs such as GPTs exhibit traits of general-purpose technologies, indicating that they could have considerable economic, social, and policy implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辞昔完成签到,获得积分10
3秒前
4秒前
4秒前
慈祥的梦露完成签到,获得积分10
5秒前
dongge发布了新的文献求助10
6秒前
尘曦完成签到,获得积分10
6秒前
迅速的易巧完成签到 ,获得积分10
11秒前
12秒前
13秒前
maxiaohan发布了新的文献求助10
14秒前
香蕉觅云应助小白不白采纳,获得10
14秒前
机灵的以筠完成签到 ,获得积分10
14秒前
Ava应助crazyatai采纳,获得50
17秒前
充电宝应助尘默采纳,获得10
17秒前
Hello应助guoduan采纳,获得10
20秒前
科研通AI6.1应助xin采纳,获得10
21秒前
小H发布了新的文献求助10
21秒前
丘比特应助玩命的博采纳,获得10
22秒前
Cathy17sl完成签到,获得积分10
23秒前
忧伤的画板完成签到 ,获得积分10
28秒前
29秒前
LiHongXi完成签到 ,获得积分10
29秒前
30秒前
33秒前
guoduan发布了新的文献求助10
33秒前
英俊的铭应助奋斗的帆采纳,获得10
33秒前
xiaobai123456发布了新的文献求助10
37秒前
叶子发布了新的文献求助10
37秒前
ya完成签到,获得积分10
38秒前
39秒前
邵梁健完成签到,获得积分10
42秒前
热心市民小红花应助陈龙采纳,获得10
47秒前
50秒前
50秒前
52秒前
52秒前
52秒前
54秒前
CipherSage应助科研通管家采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Jailing People With Mental Illness While Awaiting Commitment Hearings 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5858690
求助须知:如何正确求助?哪些是违规求助? 6340627
关于积分的说明 15638792
捐赠科研通 4972572
什么是DOI,文献DOI怎么找? 2682264
邀请新用户注册赠送积分活动 1625970
关于科研通互助平台的介绍 1583212