Identifying TME signatures for cervical cancer prognosis based on GEO and TCGA databases

宫颈癌 医学 内科学 肿瘤科 数据库 癌症 计算机科学
作者
Wen-Tao Xia,Wang‐Ren Qiu,Wangke Yu,Zhaochun Xu,Shouhua Zhang
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (4): e15096-e15096 被引量:5
标识
DOI:10.1016/j.heliyon.2023.e15096
摘要

The mortality rate from cervical cancer (CESC), a malignant tumor that affects women, has increased significantly globally in recent years. The discovery of biomarkers points to a direction for the diagnosis of cervical cancer with the advancement of bioinformatics technology. The goal of this study was to look for potential biomarkers for the diagnosis and prognosis of CESC using the GEO and TCGA databases. Because of the high dimension and small sample size of the omic data, or the use of biomarkers generated from a single omic data, the diagnosis of cervical cancer may be inaccurate and unreliable. The purpose of this study was to search the GEO and TCGA databases for potential biomarkers for the diagnosis and prognosis of CESC. We begin by downloading CESC (GSE30760) DNA methylation data from GEO, then perform differential analysis on the downloaded methylation data and screen out the differential genes. Then, using estimation algorithms, we score immune cells and stromal cells in the tumor microenvironment and perform survival analysis on the gene expression profile data and the most recent clinical data of CESC from TCGA. Then, using the 'limma' package and Venn plot in R language to perform differential analysis of genes and screen out overlapping genes, these overlapping genes were then subjected to GO and KEGG functional enrichment analysis. The differential genes screened by the GEO methylation data and the differential genes screened by the TCGA gene expression data were intersected to screen out the common differential genes. A protein-protein interaction (PPI) network of gene expression data was then created in order to discover important genes. The PPI network's key genes were crossed with previously identified common differential genes to further validate them. The Kaplan-Meier curve was then used to determine the prognostic importance of the key genes. Survival analysis has shown that CD3E and CD80 are important for the identification of cervical cancer and can be considered as potential biomarkers for cervical cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
songyuan发布了新的文献求助10
1秒前
慕青应助xxx采纳,获得10
2秒前
楚楚完成签到,获得积分10
3秒前
coolkid应助科研通管家采纳,获得10
3秒前
coolkid应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得200
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
coolkid应助科研通管家采纳,获得10
4秒前
coolkid应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
mao应助科研通管家采纳,获得20
4秒前
花里胡哨的花完成签到,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
coolkid应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
WHL完成签到,获得积分10
4秒前
某冰镇西瓜完成签到,获得积分10
6秒前
易瞳发布了新的文献求助20
7秒前
7秒前
8秒前
思源应助木子李采纳,获得10
8秒前
haoran发布了新的文献求助10
9秒前
可可完成签到 ,获得积分10
9秒前
搁浅完成签到,获得积分10
9秒前
11秒前
SAY发布了新的文献求助10
11秒前
某冰镇西瓜关注了科研通微信公众号
13秒前
13秒前
13秒前
踏实万天完成签到,获得积分10
14秒前
15秒前
16秒前
Hello应助rational采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3948851
求助须知:如何正确求助?哪些是违规求助? 3494225
关于积分的说明 11071499
捐赠科研通 3224854
什么是DOI,文献DOI怎么找? 1782595
邀请新用户注册赠送积分活动 867174
科研通“疑难数据库(出版商)”最低求助积分说明 800580