EEGNet-MSD: A Sparse Convolutional Neural Network for Efficient EEG-Based Intent Decoding

解码方法 卷积神经网络 计算机科学 符号 人工智能 脑电图 模式识别(心理学) 语音识别 算法 算术 数学 心理学 精神科
作者
Rongrong Fu,Zeyi Wang,Shiwei Wang,Xuechen Xu,Junxiang Chen,Guanghui Wen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 19684-19691
标识
DOI:10.1109/jsen.2023.3295407
摘要

Electroencephalography (EEG) is a noninvasive technique that can be used in brain machine interface (BMI) systems to measure and record brain electrical activity. Deep learning (DL) techniques have proved superior to conventional methods in EEG-based intent decoding. However, some DL models have overly complex structures while ensuring the accuracy of EEG recognition, resulting in reduced training and recognition speed. In this study, we proposed a compact multihead self-attention DL decoder that combined the convolutional neural network (CNN)-based EEGNet decoder with the ProbSparse multihead self-attention mechanism. Compared with traditional self-attention methods, this decoder ensures alignment dependent on both time complexity and memory usage of ${O}$ ( ${L}$ log ${L}$ ) and it has been demonstrated to enhance the accuracy of EEG-based intent recognition. The test results on dataset 2a from BCI Competition IV showed that the EEGNet multihead self-attention decoding (EEGNet-MSD) decoder performed approximately 8% better than the competition-winning decoder filter bank common spatial pattern (FBCSP) and namely batch and pairwise (NBPW), and achieved better results than the latest long short-term memory (LSTM) neural decoding method. In addition, a binary classification test was performed on the Physiobank EEG motor imagery (MI) dataset, and the results showed that the accuracy of EEGNet-MSD was approximately 4% higher than EEGNet, validating the stability of the EEGNet-MSD decoder. This study provides a new solution for enhancing the performance of EEG-based intent decoding in both accuracy and decoding speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fengzi151完成签到,获得积分10
刚刚
金甲狮王完成签到,获得积分10
1秒前
Orange应助xxn采纳,获得10
4秒前
谦让涵菡完成签到 ,获得积分10
6秒前
隐形曼青应助bai采纳,获得10
7秒前
7秒前
9秒前
草莓大王完成签到,获得积分10
9秒前
10秒前
Frank发布了新的文献求助10
11秒前
Green发布了新的文献求助10
11秒前
情怀应助aa采纳,获得10
11秒前
FashionBoy应助J_C_Van采纳,获得10
12秒前
梦红完成签到,获得积分10
13秒前
13秒前
在水一方应助swslgd采纳,获得10
13秒前
14秒前
14秒前
希望天下0贩的0应助Frank采纳,获得10
15秒前
lili完成签到,获得积分10
17秒前
17秒前
xxn发布了新的文献求助10
17秒前
李亚浩完成签到,获得积分20
18秒前
小蓝完成签到 ,获得积分10
18秒前
18秒前
18秒前
丹丹发布了新的文献求助10
18秒前
LUCKY发布了新的文献求助10
19秒前
李亚浩发布了新的文献求助10
20秒前
自觉汽车发布了新的文献求助10
21秒前
雨寒完成签到 ,获得积分10
21秒前
爱笑的书蝶完成签到 ,获得积分10
22秒前
111发布了新的文献求助10
22秒前
芒果发布了新的文献求助10
23秒前
24秒前
24秒前
大个应助fairland采纳,获得10
26秒前
27秒前
沉默小虾米完成签到 ,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5876935
求助须知:如何正确求助?哪些是违规求助? 6538375
关于积分的说明 15679971
捐赠科研通 4995613
什么是DOI,文献DOI怎么找? 2692242
邀请新用户注册赠送积分活动 1634443
关于科研通互助平台的介绍 1592140