Learning-Based Multimodal Information Fusion and Behavior Recognition of Vascular Interventionists' Operating Skills

计算机科学 人工智能 信息融合 人机交互 医学物理学 医学
作者
Shuang Wang,Zheng Liu,Wentuo Yang,Yongfeng Cao,Liang Zhao,Le Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4536-4547 被引量:4
标识
DOI:10.1109/jbhi.2023.3289548
摘要

The operating skills of vascular interventionists have an important impact on the effect of surgery. However, current research on behavior recognition and skills learning of interventionists' operating skills is limited. In this study, an innovative deep learning-based multimodal information fusion architecture is proposed for recognizing and analyzing eight common operating behaviors of interventionists. An experimental platform integrating four modal sensors is used to collect multimodal data from interventionists. The ANOVA and Manner-Whitney tests is used for relevance analysis of the data. The analysis results demonstrate that there is almost no significant difference ( p <0.001) between the actions related to the unimodal data, which cannot be used for accurate behavior recognition. Therefore, a study of the fusion architecture based on the existing machine learning classifier and the proposed deep learning fusion architecture is carried out. The research findings indicate that the proposed deep learning-based fusion architecture achieves an impressive overall accuracy of 98.5%, surpassing both the machine learning classifier (93.51%) and the unimodal data (90.05%). The deep learning-based multimodal information fusion architecture proves the feasibility of behavior recognition and skills learning of interventionist's operating skills. Furthermore, the application of deep learning-based multimodal fusion technology of surgeon's operating skills will help to improve the autonomy and intelligence of surgical robotic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助111采纳,获得10
1秒前
1秒前
科目三应助努力奋斗采纳,获得10
1秒前
1秒前
MM发布了新的文献求助10
2秒前
3秒前
显隐发布了新的文献求助10
3秒前
3秒前
伶俐绿柏完成签到 ,获得积分10
3秒前
姚小包子发布了新的文献求助10
4秒前
鲜于灵竹发布了新的文献求助30
5秒前
5秒前
dada发布了新的文献求助10
6秒前
...发布了新的文献求助10
6秒前
CQ完成签到,获得积分10
7秒前
YUE完成签到,获得积分10
8秒前
若雨凌风应助李键刚采纳,获得20
8秒前
hellosci666发布了新的文献求助10
8秒前
科研老白发布了新的文献求助10
8秒前
lh完成签到,获得积分10
9秒前
保卫时光完成签到,获得积分10
9秒前
Bear发布了新的文献求助10
10秒前
ttzziy完成签到 ,获得积分10
11秒前
若槻椋完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
13秒前
hellosci666完成签到,获得积分10
14秒前
15秒前
呆呆发布了新的文献求助10
16秒前
科研通AI5应助Hodlumm采纳,获得10
16秒前
困困发布了新的文献求助30
18秒前
19秒前
xhy发布了新的文献求助10
19秒前
20秒前
20秒前
优雅的半梅完成签到 ,获得积分10
20秒前
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371950
关于积分的说明 10469874
捐赠科研通 3091536
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818246
科研通“疑难数据库(出版商)”最低求助积分说明 770765