Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework

肾透明细胞癌 转录组 背景(考古学) 基因签名 计算生物学 医学 精密医学 列线图 个性化医疗 免疫疗法 生物信息学 机器学习 肾细胞癌 肿瘤科 癌症 计算机科学 基因 生物 基因表达 内科学 病理 古生物学 生物化学
作者
Jinsong Liu,Yanjia Shi,Yuxin Zhang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:14 (2): 275-305 被引量:54
标识
DOI:10.1007/s13167-023-00327-3
摘要

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桥豆麻袋完成签到,获得积分10
4秒前
unowhoiam完成签到 ,获得积分0
5秒前
6秒前
陈粒完成签到 ,获得积分10
6秒前
gtgwm完成签到,获得积分10
7秒前
zhuxd完成签到 ,获得积分10
11秒前
小蘑菇应助自然1111采纳,获得10
12秒前
清风完成签到 ,获得积分10
19秒前
暖羊羊Y完成签到 ,获得积分10
23秒前
guoxihan完成签到,获得积分10
29秒前
32秒前
zpli完成签到 ,获得积分10
32秒前
航行天下完成签到 ,获得积分10
35秒前
xdc完成签到,获得积分20
35秒前
呼呼哈哈完成签到,获得积分10
35秒前
张晓东完成签到,获得积分10
43秒前
Lucas应助孙同学采纳,获得10
47秒前
50秒前
丽娘完成签到 ,获得积分10
54秒前
55秒前
fengxiaochao应助科研通管家采纳,获得10
55秒前
孙同学完成签到,获得积分10
56秒前
tracer526发布了新的文献求助10
57秒前
孙同学发布了新的文献求助10
1分钟前
tracer526完成签到,获得积分10
1分钟前
情怀应助孙同学采纳,获得10
1分钟前
虚室生白完成签到,获得积分10
1分钟前
狂野元枫完成签到 ,获得积分10
1分钟前
1分钟前
Wang发布了新的文献求助10
1分钟前
lht完成签到 ,获得积分10
1分钟前
长不大的幼稚完成签到 ,获得积分10
1分钟前
Lny发布了新的文献求助20
1分钟前
缓慢的甜瓜完成签到,获得积分10
1分钟前
小齐爱科研完成签到,获得积分10
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
魂梦与君同完成签到 ,获得积分10
1分钟前
SCIER完成签到,获得积分10
1分钟前
Kelly完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866595
求助须知:如何正确求助?哪些是违规求助? 6424609
关于积分的说明 15654615
捐赠科研通 4981495
什么是DOI,文献DOI怎么找? 2686636
邀请新用户注册赠送积分活动 1629459
关于科研通互助平台的介绍 1587472