Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework

肾透明细胞癌 转录组 背景(考古学) 基因签名 计算生物学 医学 精密医学 列线图 个性化医疗 免疫疗法 生物信息学 机器学习 肾细胞癌 肿瘤科 癌症 计算机科学 基因 生物 基因表达 内科学 病理 生物化学 古生物学
作者
Jinsong Liu,Yanjia Shi,Yuxin Zhang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:14 (2): 275-305 被引量:21
标识
DOI:10.1007/s13167-023-00327-3
摘要

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NXK发布了新的文献求助10
刚刚
zero完成签到,获得积分10
1秒前
煜清清完成签到 ,获得积分10
2秒前
wenbin完成签到 ,获得积分10
4秒前
笑的得美完成签到,获得积分10
4秒前
在水一方应助zhangsudi采纳,获得20
6秒前
医路前行完成签到 ,获得积分10
7秒前
copper完成签到,获得积分10
9秒前
小李完成签到,获得积分10
9秒前
隐形曼青应助贪玩岱周采纳,获得10
9秒前
九姑娘完成签到 ,获得积分10
10秒前
小叉叉搞快点完成签到 ,获得积分10
10秒前
NXK完成签到,获得积分10
11秒前
文武兼备完成签到,获得积分10
18秒前
wangwangwang完成签到,获得积分10
19秒前
科研通AI2S应助加到几点呢采纳,获得10
20秒前
大方万仇完成签到 ,获得积分10
22秒前
todd发布了新的文献求助10
22秒前
jkhjkhj完成签到,获得积分10
32秒前
34秒前
35秒前
书记完成签到,获得积分10
42秒前
俎树同完成签到 ,获得积分10
45秒前
45秒前
李振华发布了新的文献求助10
49秒前
super chan完成签到,获得积分20
54秒前
向阳生长的花完成签到 ,获得积分10
1分钟前
123关闭了123文献求助
1分钟前
cdercder应助Jasmine采纳,获得10
1分钟前
1分钟前
彭于晏应助lxd采纳,获得10
1分钟前
执执发布了新的文献求助10
1分钟前
zhangsudi完成签到,获得积分10
1分钟前
小牛同志完成签到,获得积分10
1分钟前
1分钟前
陈汤完成签到,获得积分10
1分钟前
rcrc111发布了新的文献求助10
1分钟前
七七完成签到 ,获得积分10
1分钟前
冠心没有病完成签到,获得积分10
1分钟前
lxd发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872