Ancillary Services in Targeted Advertising: From Prediction to Prescription

计算机科学 收入 服务(商务) 可扩展性 产品(数学) 决策树 运筹学 机器学习 营销 业务 数据库 几何学 数学 会计 工程类
作者
Alison Borenstein,Ankit Mangal,Georgia Perakis,Stefan Poninghaus,Divya Singhvi,Omar Skali Lami,Jiong Wei Lua
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (4): 1285-1303 被引量:6
标识
DOI:10.1287/msom.2020.0491
摘要

Problem definition: Online retailers provide recommendations of ancillary services when a customer is making a purchase. Our goal is to predict the net present value (NPV) of these services, estimate the probability of a customer subscribing to each of them depending on what services are offered to them, and ultimately prescribe the optimal personalized service recommendation that maximizes the expected long-term revenue. Methodology/results: We propose a novel method called cluster-while-classify (CWC), which jointly groups observations into clusters (segments) and learns a distinct classification model within each of these segments to predict the sign-up propensity of services based on customer, product, and session-level features. This method is competitive with the industry state of the art and can be represented in a simple decision tree. This makes CWC interpretable and easily actionable. We then use double machine learning (DML) and causal forests to estimate the NPV for each service and, finally, propose an iterative optimization strategy—that is, scalable and efficient—to solve the personalized ancillary service recommendation problem. CWC achieves a competitive 74% out-of-sample accuracy over four possible outcomes and seven different combinations of services for the propensity predictions. This, alongside the rest of the personalized holistic optimization framework, can potentially result in an estimated 2.5%–3.5% uplift in the revenue based on our numerical study. Managerial implications: The proposed solution allows online retailers in general and Wayfair in particular to curate their service offerings and optimize and personalize their service recommendations for the stakeholders. This results in a simplified, streamlined process and a significant long-term revenue uplift. History: This paper has been accepted as part of the 2021 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2020.0491 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edward完成签到,获得积分10
7秒前
大圆土豆完成签到 ,获得积分10
7秒前
xiaoyi完成签到 ,获得积分10
8秒前
theo完成签到 ,获得积分10
14秒前
白白不喽完成签到 ,获得积分10
22秒前
又又完成签到,获得积分0
24秒前
笨笨忘幽完成签到,获得积分0
31秒前
CLTTT完成签到,获得积分0
38秒前
Patience完成签到,获得积分10
44秒前
47秒前
widesky777完成签到 ,获得积分0
54秒前
无奈谷芹完成签到 ,获得积分10
1分钟前
刚好夏天完成签到 ,获得积分10
1分钟前
天天快乐应助白华苍松采纳,获得10
1分钟前
可绪kk完成签到 ,获得积分10
1分钟前
maher完成签到,获得积分10
1分钟前
月儿完成签到 ,获得积分10
1分钟前
张嘉雯完成签到 ,获得积分10
1分钟前
Moto_Fang完成签到 ,获得积分10
1分钟前
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
薛长琴完成签到 ,获得积分10
1分钟前
jason完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
俭朴的觅松完成签到 ,获得积分10
2分钟前
纤指细轻捻完成签到 ,获得积分10
2分钟前
小鱼女侠完成签到 ,获得积分10
2分钟前
笨笨听枫完成签到 ,获得积分10
2分钟前
麦田麦兜完成签到,获得积分10
2分钟前
jnshen完成签到 ,获得积分10
2分钟前
朴素海亦完成签到 ,获得积分10
2分钟前
张来完成签到 ,获得积分10
2分钟前
陈CC完成签到 ,获得积分10
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
俏皮的老三完成签到 ,获得积分10
3分钟前
506407完成签到,获得积分10
3分钟前
JUN完成签到,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
默默完成签到 ,获得积分0
3分钟前
瞿人雄完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866395
求助须知:如何正确求助?哪些是违规求助? 6423081
关于积分的说明 15654465
捐赠科研通 4981312
什么是DOI,文献DOI怎么找? 2686558
邀请新用户注册赠送积分活动 1629417
关于科研通互助平台的介绍 1587407