亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ancillary Services in Targeted Advertising: From Prediction to Prescription

计算机科学 收入 服务(商务) 可扩展性 产品(数学) 决策树 运筹学 机器学习 营销 业务 数据库 几何学 数学 会计 工程类
作者
Alison Borenstein,Ankit Mangal,Georgia Perakis,Stefan Poninghaus,Divya Singhvi,Omar Skali Lami,Jiong Wei Lua
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (4): 1285-1303 被引量:6
标识
DOI:10.1287/msom.2020.0491
摘要

Problem definition: Online retailers provide recommendations of ancillary services when a customer is making a purchase. Our goal is to predict the net present value (NPV) of these services, estimate the probability of a customer subscribing to each of them depending on what services are offered to them, and ultimately prescribe the optimal personalized service recommendation that maximizes the expected long-term revenue. Methodology/results: We propose a novel method called cluster-while-classify (CWC), which jointly groups observations into clusters (segments) and learns a distinct classification model within each of these segments to predict the sign-up propensity of services based on customer, product, and session-level features. This method is competitive with the industry state of the art and can be represented in a simple decision tree. This makes CWC interpretable and easily actionable. We then use double machine learning (DML) and causal forests to estimate the NPV for each service and, finally, propose an iterative optimization strategy—that is, scalable and efficient—to solve the personalized ancillary service recommendation problem. CWC achieves a competitive 74% out-of-sample accuracy over four possible outcomes and seven different combinations of services for the propensity predictions. This, alongside the rest of the personalized holistic optimization framework, can potentially result in an estimated 2.5%–3.5% uplift in the revenue based on our numerical study. Managerial implications: The proposed solution allows online retailers in general and Wayfair in particular to curate their service offerings and optimize and personalize their service recommendations for the stakeholders. This results in a simplified, streamlined process and a significant long-term revenue uplift. History: This paper has been accepted as part of the 2021 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2020.0491 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yn_关闭了Yn_文献求助
1秒前
复杂白风完成签到 ,获得积分10
6秒前
柯慕玉泽发布了新的文献求助30
20秒前
24秒前
sxh完成签到,获得积分10
28秒前
洋汐发布了新的文献求助10
30秒前
Soledad完成签到 ,获得积分10
37秒前
董羽佳完成签到,获得积分10
40秒前
丘比特应助柯慕玉泽采纳,获得30
41秒前
简单的元珊完成签到 ,获得积分10
41秒前
成就念芹完成签到,获得积分10
44秒前
奇拉维特完成签到 ,获得积分10
45秒前
Docgyj完成签到 ,获得积分0
1分钟前
1分钟前
柯慕玉泽发布了新的文献求助30
1分钟前
Eric完成签到,获得积分10
1分钟前
Yn_发布了新的文献求助10
2分钟前
fengxiaochao应助畅快的枫采纳,获得10
2分钟前
fengxiaochao应助畅快的枫采纳,获得10
2分钟前
Yn_完成签到,获得积分10
2分钟前
yaqie发布了新的文献求助10
2分钟前
2302284972完成签到,获得积分10
3分钟前
Ava应助鱼鱼鱼采纳,获得10
3分钟前
ZanE完成签到,获得积分10
3分钟前
充电宝应助yaqie采纳,获得10
3分钟前
柯慕玉泽完成签到,获得积分10
3分钟前
蓝风铃完成签到 ,获得积分10
3分钟前
Hayat应助科研通管家采纳,获得10
4分钟前
4分钟前
雷霆康康完成签到,获得积分10
5分钟前
YJSSLBY完成签到 ,获得积分10
5分钟前
6分钟前
mzh发布了新的文献求助10
6分钟前
畅快的枫完成签到,获得积分10
6分钟前
研友_VZG7GZ应助rosy采纳,获得10
6分钟前
7分钟前
rosy发布了新的文献求助10
7分钟前
吊炸天完成签到 ,获得积分10
8分钟前
8分钟前
桐桐应助rosy采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5860798
求助须知:如何正确求助?哪些是违规求助? 6360848
关于积分的说明 15642885
捐赠科研通 4974310
什么是DOI,文献DOI怎么找? 2683291
邀请新用户注册赠送积分活动 1626876
关于科研通互助平台的介绍 1584185