Ancillary Services in Targeted Advertising: From Prediction to Prescription

计算机科学 收入 服务(商务) 可扩展性 产品(数学) 决策树 运筹学 机器学习 营销 业务 数据库 几何学 数学 会计 工程类
作者
Alison Borenstein,Ankit Mangal,Georgia Perakis,Stefan Poninghaus,Divya Singhvi,Omar Skali Lami,Jiong Wei Lua
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (4): 1285-1303 被引量:6
标识
DOI:10.1287/msom.2020.0491
摘要

Problem definition: Online retailers provide recommendations of ancillary services when a customer is making a purchase. Our goal is to predict the net present value (NPV) of these services, estimate the probability of a customer subscribing to each of them depending on what services are offered to them, and ultimately prescribe the optimal personalized service recommendation that maximizes the expected long-term revenue. Methodology/results: We propose a novel method called cluster-while-classify (CWC), which jointly groups observations into clusters (segments) and learns a distinct classification model within each of these segments to predict the sign-up propensity of services based on customer, product, and session-level features. This method is competitive with the industry state of the art and can be represented in a simple decision tree. This makes CWC interpretable and easily actionable. We then use double machine learning (DML) and causal forests to estimate the NPV for each service and, finally, propose an iterative optimization strategy—that is, scalable and efficient—to solve the personalized ancillary service recommendation problem. CWC achieves a competitive 74% out-of-sample accuracy over four possible outcomes and seven different combinations of services for the propensity predictions. This, alongside the rest of the personalized holistic optimization framework, can potentially result in an estimated 2.5%–3.5% uplift in the revenue based on our numerical study. Managerial implications: The proposed solution allows online retailers in general and Wayfair in particular to curate their service offerings and optimize and personalize their service recommendations for the stakeholders. This results in a simplified, streamlined process and a significant long-term revenue uplift. History: This paper has been accepted as part of the 2021 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2020.0491 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zsr发布了新的文献求助30
1秒前
1秒前
lulala发布了新的文献求助30
3秒前
4秒前
木又权发布了新的文献求助10
4秒前
5秒前
衣裳薄完成签到,获得积分10
5秒前
5秒前
FashionBoy应助linkman采纳,获得20
5秒前
111发布了新的文献求助10
5秒前
心有锦缎完成签到,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
8秒前
8秒前
粒子耶发布了新的文献求助10
8秒前
丰富靖琪完成签到 ,获得积分10
8秒前
9秒前
李健应助乐观小之采纳,获得20
9秒前
mao发布了新的文献求助10
9秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
柏林寒冬应助科研通管家采纳,获得10
10秒前
矛头蝮应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
炙热向南应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
yang应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
yang应助科研通管家采纳,获得10
12秒前
ED应助科研通管家采纳,获得10
12秒前
Alpha发布了新的文献求助10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195764
求助须知:如何正确求助?哪些是违规求助? 3731392
关于积分的说明 11751874
捐赠科研通 3406045
什么是DOI,文献DOI怎么找? 1868742
邀请新用户注册赠送积分活动 924975
科研通“疑难数据库(出版商)”最低求助积分说明 835549