亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive transfer learning for PINN

初始化 计算机科学 学习迁移 理论(学习稳定性) 人工智能 航程(航空) 人工神经网络 路径(计算) 过程(计算) 最优化问题 机器学习 数学优化 算法 数学 材料科学 复合材料 程序设计语言 操作系统
作者
Yang Liu,Liu Wen,Xunshi Yan,Shuaiqi Guo,Chen-An Zhang
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:490: 112291-112291 被引量:52
标识
DOI:10.1016/j.jcp.2023.112291
摘要

Physics-informed neural networks (PINNs) have shown great potential in solving computational physics problems with sparse, noisy, unstructured, and multi-fidelity data. However, the training of PINN remains a challenge, and PINN is not robust to deal with some complex problems, such as the sharp local gradient in broad computational domains, etc. Transfer learning techniques can provide fast and accurate training for PINN through intelligent initialization, but the previous researches are much less effective when dealing with transfer learning cases with a large range of parameter variation, which also suffers from the same drawbacks. This manuscript develops the concept of the minimum energy path for PINN and proposes an adaptive transfer learning for PINN (AtPINN). The Partial Differential Equations (PDEs) parameters are initialized by the source parameters and updated adaptively to the target parameters during the training process, which can guide the optimization of PINN from the source to the target task. This process is essentially performed along a designed low-loss path, which is no barrier in the energy landscape of neural networks. Consequently, the stability of the training process is guaranteed. AtPINN is utilized to achieve transfer learning cases with a large range of parameter variation for solving five complex problems. The results demonstrate that AtPINN has promising potential for extending the application of PINN. Besides, three transfer learning cases with different ranges of parameter variation are analyzed through visualization. Furthermore, results also show that the idea of adaptive transfer learning can be a particular optimization strategy to directly solve problems without intelligent initialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
萝卜鱼芋发布了新的文献求助10
25秒前
26秒前
26秒前
桐桐应助YuLu采纳,获得10
27秒前
量子星尘发布了新的文献求助10
29秒前
优美紫槐发布了新的文献求助10
29秒前
ceeray23发布了新的文献求助20
31秒前
安详的从筠完成签到,获得积分10
32秒前
33秒前
39秒前
YuLu发布了新的文献求助10
39秒前
天天快乐应助萝卜鱼芋采纳,获得10
40秒前
仇书竹发布了新的文献求助10
43秒前
52秒前
我是老大应助橘子有点酸采纳,获得10
53秒前
优美紫槐发布了新的文献求助10
53秒前
56秒前
Papayaaa发布了新的文献求助10
57秒前
oleskarabach完成签到,获得积分20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
完美世界应助优美紫槐采纳,获得10
1分钟前
思源应助海咲umi采纳,获得10
1分钟前
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
NEKO发布了新的文献求助30
1分钟前
晴天完成签到 ,获得积分10
1分钟前
辣椒完成签到 ,获得积分10
1分钟前
Akim应助光轮2000采纳,获得10
1分钟前
1分钟前
1分钟前
仇书竹完成签到,获得积分10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
潜行者完成签到 ,获得积分10
1分钟前
1分钟前
QP34完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853336
捐赠科研通 4688880
什么是DOI,文献DOI怎么找? 2540567
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471565