Adaptive transfer learning for PINN

初始化 计算机科学 学习迁移 理论(学习稳定性) 人工智能 航程(航空) 人工神经网络 路径(计算) 过程(计算) 最优化问题 机器学习 数学优化 算法 数学 材料科学 复合材料 程序设计语言 操作系统
作者
Yang Liu,Liu Wen,Xunshi Yan,Shuaiqi Guo,Chen-An Zhang
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:490: 112291-112291 被引量:29
标识
DOI:10.1016/j.jcp.2023.112291
摘要

Physics-informed neural networks (PINNs) have shown great potential in solving computational physics problems with sparse, noisy, unstructured, and multi-fidelity data. However, the training of PINN remains a challenge, and PINN is not robust to deal with some complex problems, such as the sharp local gradient in broad computational domains, etc. Transfer learning techniques can provide fast and accurate training for PINN through intelligent initialization, but the previous researches are much less effective when dealing with transfer learning cases with a large range of parameter variation, which also suffers from the same drawbacks. This manuscript develops the concept of the minimum energy path for PINN and proposes an adaptive transfer learning for PINN (AtPINN). The Partial Differential Equations (PDEs) parameters are initialized by the source parameters and updated adaptively to the target parameters during the training process, which can guide the optimization of PINN from the source to the target task. This process is essentially performed along a designed low-loss path, which is no barrier in the energy landscape of neural networks. Consequently, the stability of the training process is guaranteed. AtPINN is utilized to achieve transfer learning cases with a large range of parameter variation for solving five complex problems. The results demonstrate that AtPINN has promising potential for extending the application of PINN. Besides, three transfer learning cases with different ranges of parameter variation are analyzed through visualization. Furthermore, results also show that the idea of adaptive transfer learning can be a particular optimization strategy to directly solve problems without intelligent initialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凯七完成签到,获得积分10
刚刚
刚刚
沉123发布了新的文献求助10
1秒前
茜茜哎科研完成签到,获得积分10
1秒前
佚名发布了新的文献求助10
2秒前
天真怜晴完成签到,获得积分10
2秒前
文章大发完成签到,获得积分10
2秒前
ruuuu完成签到,获得积分10
2秒前
欣喜的代容完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
大胆的琳完成签到 ,获得积分10
3秒前
温婉的凡阳完成签到 ,获得积分10
4秒前
核桃发布了新的文献求助10
5秒前
宋欢乐完成签到,获得积分10
6秒前
4311发布了新的文献求助10
6秒前
小猴发布了新的文献求助10
6秒前
6秒前
LHR发布了新的文献求助10
6秒前
6秒前
开朗的可仁完成签到,获得积分10
6秒前
6秒前
小熊炸毛发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
大鱼完成签到,获得积分10
9秒前
Suji完成签到,获得积分10
10秒前
自由的思枫完成签到 ,获得积分10
10秒前
ting完成签到,获得积分10
10秒前
木木完成签到,获得积分10
10秒前
阵风_完成签到,获得积分10
10秒前
优雅的WAN发布了新的文献求助10
10秒前
Morgans00完成签到,获得积分10
11秒前
小花爱科研完成签到 ,获得积分20
11秒前
11秒前
典雅葶完成签到 ,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785078
求助须知:如何正确求助?哪些是违规求助? 3330527
关于积分的说明 10246774
捐赠科研通 3045869
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759675