DPMGCDA: Deciphering circRNA–Drug Sensitivity Associations with Dual Perspective Learning and Path-Masked Graph Autoencoder

自编码 图形 计算机科学 人工智能 药物重新定位 理论计算机科学 机器学习 药品 深度学习 医学 精神科
作者
Yue Luo,Lei Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4359-4372 被引量:4
标识
DOI:10.1021/acs.jcim.4c00573
摘要

Accumulating evidence has indicated that the expression of circular RNAs (circRNAs) can affect the cellular sensitivity to drugs and significantly influence drug efficacy. However, traditional experimental approaches for validating these associations are resource-intensive and time-consuming. To address this challenge, we propose a computational framework termed DPMGCDA leveraging dual perspective learning and path-masked graph autoencoder to predict circRNA-drug sensitivity associations. Initially, we construct circRNA-circRNA fusion similarity networks and drug-drug fusion similarity networks using similarity network fusion, ensuring a comprehensive integration of information. Based on the above, we built the circRNA homogeneous graph, the drug homogeneous graph, and the circRNA-drug heterogeneous graph. Next, we form the initial node features in the circRNA-drug heterogeneous graph from the homogeneous graph-level perspective and the combined feature-level perspective and complete the prediction of potential associations using the path-masked graph autoencoder in both perspectives. The predictions under both perspectives are finally combined to obtain the final prediction score. Transductive setting experiments and inductive setting experiments all demonstrate that our method, DPMGCDA, outperforms state-of-the-art approaches. Additionally, we verify the necessity of employing dual perspective learning through ablation tests and analyze the effective encoding capability of the path-masked graph autoencoder for features through embedding visualization. Moreover, case studies on four drugs corroborate DPMGCDA's ability to identify potential circRNAs associated with new drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的月亮完成签到,获得积分20
刚刚
FashionBoy应助赶due小天才采纳,获得10
刚刚
刚刚
JJ发布了新的文献求助10
1秒前
淡淡的玉兰完成签到,获得积分20
3秒前
吴wuwu发布了新的文献求助10
3秒前
老baby应助唐唐采纳,获得20
4秒前
8秒前
Owen应助Rili采纳,获得10
9秒前
cc陈关注了科研通微信公众号
9秒前
9秒前
微微完成签到,获得积分10
10秒前
SciGPT应助蝉一个夏天采纳,获得10
12秒前
冷静幻枫发布了新的文献求助10
14秒前
14秒前
19秒前
ADJ完成签到,获得积分10
19秒前
19秒前
桐桐应助冷静幻枫采纳,获得10
21秒前
22秒前
cc陈发布了新的文献求助10
22秒前
xiaoshuai完成签到,获得积分10
22秒前
23秒前
23秒前
25秒前
火星上映安完成签到 ,获得积分20
25秒前
岳岳岳发布了新的文献求助10
27秒前
haha发布了新的文献求助30
28秒前
大模型应助吴wuwu采纳,获得10
28秒前
Mach发布了新的文献求助10
29秒前
31秒前
33秒前
xiaoxiao完成签到 ,获得积分10
38秒前
断了的弦完成签到,获得积分10
38秒前
42秒前
lemon完成签到 ,获得积分10
42秒前
年轻薯片完成签到 ,获得积分10
46秒前
阔达从蕾发布了新的文献求助10
49秒前
斯文败类应助山月为衾采纳,获得10
53秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
生活在欺瞒的年代:傅树介政治斗争回忆录 260
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5878707
求助须知:如何正确求助?哪些是违规求助? 6554985
关于积分的说明 15685018
捐赠科研通 4997834
什么是DOI,文献DOI怎么找? 2693201
邀请新用户注册赠送积分活动 1635160
关于科研通互助平台的介绍 1592710