Combining descriptive and predictive modeling to systematically design depth filtration‐based harvest processes for biologics

结垢 过滤(数学) 滤波器(信号处理) 计算机科学 工艺工程 生化工程 过程(计算) 工程类 数学 化学 统计 生物化学 计算机视觉 操作系统
作者
Peter Jianrui Liu,Michael Hartmann,Ajay Shankaran,Hong Li,John P. Welsh
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:121 (9): 2924-2935 被引量:1
标识
DOI:10.1002/bit.28765
摘要

Advances in upstream production of biologics-particularly intensified fed-batch processes beyond 10% cell solids-have severely strained harvest operations, especially depth filtration. Bioreactors containing high amounts of cell debris (more than 40% particles <10 µm in diameter) are increasingly common and drive the need for more robust depth filtration processes, while accelerated timelines emphasize the need for predictive tools to accelerate development. Both needs are constrained by the current limited mechanistic understanding of the harvest filter-feedstream system. Historically, process development relied on screening scale-down depth filter devices and conditions to define throughput before fouling, indicated by increasing differential pressure and/or particle breakthrough (measured via turbidity). This approach is straightforward, but resource-intensive, and its results are inherently limited by the variability of the feedstream. Semi-empirical models have been developed from first principles to describe various mechanisms of filter fouling, that is, pore constriction, pore blocking, and/or surface deposit. Fitting these models to experimental data can assist in identifying the dominant fouling mechanism. Still, this approach sees limited application to guide process development, as it is descriptive, not predictive. To address this gap, we developed a hybrid modeling approach. Leveraging historical bench scale filtration process data, we built a partial least squares regression model to predict particle breakthrough from filter and feedstream attributes, and leveraged the model to demonstrate prediction of filter performance a priori. The fouling models are used to interpret and provide physical meaning to these computational models. This hybrid approach-combining the mechanistic insights of fouling models and the predictive capability of computational models-was used to establish a robust platform strategy for depth filtration of Chinese hamster ovary cell cultures. As new data continues to teach the computational models, in silico tools will become an essential part of harvest process development by enabling prospective experimental design, reducing total experimental load, and accelerating development under strict timelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元谷雪发布了新的文献求助30
1秒前
kxyraw完成签到,获得积分20
1秒前
科研通AI5应助123采纳,获得10
1秒前
语霖仙完成签到,获得积分10
2秒前
Nakjeong完成签到 ,获得积分10
3秒前
Jess给昵称的求助进行了留言
3秒前
littleyi完成签到,获得积分10
4秒前
生椰拿铁不加生椰完成签到 ,获得积分10
4秒前
白踏歌发布了新的文献求助10
5秒前
t3t3t3t3完成签到,获得积分10
5秒前
5秒前
mrz完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
可可完成签到,获得积分10
7秒前
健忘的醉易完成签到,获得积分10
7秒前
科目三应助龙哥采纳,获得10
8秒前
分子遗传小菜鸟完成签到,获得积分10
9秒前
充电宝应助轩辕代珊采纳,获得10
9秒前
JankinWen发布了新的文献求助10
10秒前
11秒前
11秒前
XiaoM发布了新的文献求助10
13秒前
费城青年完成签到,获得积分10
13秒前
钮卿完成签到,获得积分10
14秒前
haochi发布了新的文献求助10
14秒前
爱科研的缓冲液完成签到,获得积分20
15秒前
15秒前
萤火虫发布了新的文献求助200
15秒前
科研助手6应助单纯半双采纳,获得10
16秒前
16秒前
16秒前
kk完成签到,获得积分10
18秒前
剑光如我发布了新的文献求助10
19秒前
Gavin完成签到,获得积分10
19秒前
Orange应助白踏歌采纳,获得10
20秒前
郝富完成签到,获得积分10
20秒前
XiaoM完成签到,获得积分10
21秒前
肖耶啵发布了新的文献求助10
21秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Handbook of Material Weathering 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831477
求助须知:如何正确求助?哪些是违规求助? 3373663
关于积分的说明 10480971
捐赠科研通 3093648
什么是DOI,文献DOI怎么找? 1702873
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771284