Semantic segmentation for UAV low-light scenes based on deep learning and thermal infrared image features

热红外 人工智能 分割 计算机科学 红外线的 计算机视觉 遥感 深度学习 图像(数学) 地质学 环境科学 光学 物理
作者
Pakezhamu Nuradili,Guiyun Zhou,Ji Zhou,Ziwei Wang,Yizhen Meng,Wenbin Tang,Farid Melgani
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (12): 4160-4177
标识
DOI:10.1080/01431161.2024.2357842
摘要

With advancements in unmanned aerial vehicle (UAV) remote sensing technology, remote sensing images have emerged as a critical source of research data across various domains, including agriculture, forestry, and environmental research. UAVs fitted with diverse spectral sensors are capable of capturing diverse image modalities, presenting both challenges and opportunities for image semantic segmentation technology. Most existing semantic segmentation networks excel in processing images captured by visible light cameras and often fail to segment images captured by unmanned aerial vehicles under low-light conditions due to insufficient lighting, reduced visual clarity, high noise levels, and uneven illumination. Thermal infrared imaging sensors can capture thermal radiation information, which has the potential to improve segmentation accuracy when integrated with visible images. In this study, we introduce a novel semantic segmentation processing framework, which evaluates different fusing methods and fuses visible and thermal infrared images. The framework employs a lightweight deep learning model and is designed for accurate semantic segmentation on the fused images. Experiments are conducted on images collected in our unmanned aerial vehicle flight experiments and a public night-time dataset to assess the performance of our proposed approach. Experimental results show that our proposed framework achieves state-of-the-art performance in semantic segmentation tasks in low-light conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小弟完成签到,获得积分10
刚刚
didi发布了新的文献求助10
刚刚
科研通AI5应助风趣尔丝采纳,获得10
刚刚
刚刚
1秒前
明理半山完成签到,获得积分10
1秒前
2秒前
mingruiqi完成签到,获得积分10
3秒前
3秒前
小蘑菇发布了新的文献求助10
4秒前
过CCC完成签到,获得积分20
4秒前
5秒前
卿qing完成签到,获得积分10
5秒前
5秒前
三笠完成签到,获得积分10
5秒前
wanzhen发布了新的文献求助10
6秒前
6秒前
7秒前
CC发布了新的文献求助10
7秒前
赘婿应助王三歲采纳,获得10
7秒前
7秒前
坦率铃铛发布了新的文献求助10
7秒前
HYH发布了新的文献求助10
8秒前
8秒前
xjp发布了新的文献求助10
9秒前
大模型应助dengy采纳,获得10
9秒前
10秒前
gubei发布了新的文献求助10
10秒前
彭于晏应助Hemingwayway采纳,获得10
10秒前
10秒前
我是老大应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得30
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806325
求助须知:如何正确求助?哪些是违规求助? 3351096
关于积分的说明 10352817
捐赠科研通 3066979
什么是DOI,文献DOI怎么找? 1684207
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765487