Machine learning evaluation of inequities and disparities associated with nurse sensitive indicator safety events

医学 观察研究 人口统计学的 分级(工程) 描述性统计 多元统计 民族 多元分析 人口学 机器学习 内科学 统计 计算机科学 土木工程 数学 社会学 人类学 工程类
作者
Erika R. Georgantes,Fatma Güntürkün,T. J. McGreevy,Mary E. Lough
出处
期刊:Journal of Nursing Scholarship [Wiley]
标识
DOI:10.1111/jnu.12983
摘要

Abstract Purpose To use machine learning to examine health equity and clinical outcomes in patients who experienced a nurse sensitive indicator (NSI) event, defined as a fall, a hospital‐acquired pressure injury (HAPI) or a hospital‐acquired infection (HAI). Design This was a retrospective observational study from a single academic hospital over six calendar years (2016–2021). Machine learning was used to examine patients with an NSI compared to those without. Methods Inclusion criteria: all adult inpatient admissions (2016–2021). Three approaches were used to analyze the NSI group compared to the No‐NSI group. In the univariate analysis, descriptive statistics, and absolute standardized differences (ASDs) were employed to compare the demographics and clinical variables of patients who experienced a NSI and those who did not experience any NSIs. For the multivariate analysis, a light grading boosting machine (LightGBM) model was utilized to comprehensively examine the relationships associated with the development of an NSI. Lastly, a simulation study was conducted to quantify the strength of associations obtained from the machine learning model. Results From 163,507 admissions, 4643 (2.8%) were associated with at least one NSI. The mean, standard deviation (SD) age was 59.5 (18.2) years, males comprised 82,397 (50.4%). Non‐Hispanic White 84,760 (51.8%), non‐Hispanic Black 8703 (5.3%), non‐Hispanic Asian 23,368 (14.3%), non‐Hispanic Other 14,284 (8.7%), and Hispanic 30,271 (18.5%). Race and ethnicity alone were not associated with occurrence of an NSI. The NSI group had a statistically significant longer length of stay (LOS), longer intensive care unit (ICU) LOS, and was more likely to have an emergency admission compared to the group without an NSI. The simulation study results demonstrated that likelihood of NSI was higher in patients admitted under the major diagnostic categories (MDC) associated with circulatory, digestive, kidney/urinary tract, nervous, and infectious and parasitic disease diagnoses. Conclusion In this study, race/ethnicity was not associated with the risk of an NSI event. The risk of an NSI event was associated with emergency admission, longer LOS, longer ICU‐LOS and certain MDCs (circulatory, digestive, kidney/urinary, nervous, infectious, and parasitic diagnoses). Clinical Relevance Machine learning methodologies provide a new mechanism to investigate NSI events through the lens of health equity/disparity. Understanding which patients are at higher risk for adverse outcomes can help hospitals improve nursing care and prevent NSI injury and harm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
化工牛马人应助hjhhjh采纳,获得10
9秒前
蓬蒿人发布了新的文献求助10
10秒前
10秒前
GPTea完成签到,获得积分0
13秒前
zz完成签到 ,获得积分10
14秒前
慕容博完成签到 ,获得积分0
14秒前
14秒前
超帅千万完成签到,获得积分20
15秒前
kyt完成签到,获得积分10
15秒前
WEIHAO完成签到,获得积分10
15秒前
16秒前
可燃冰完成签到,获得积分10
17秒前
yaoyao6688完成签到,获得积分10
20秒前
小面包儿发布了新的文献求助10
20秒前
CodeCraft应助JKL采纳,获得10
21秒前
21秒前
思源应助研友_ZGmVjL采纳,获得10
22秒前
23秒前
OU完成签到,获得积分10
25秒前
小陈完成签到,获得积分10
25秒前
Itazu完成签到,获得积分10
25秒前
土豆发布了新的文献求助10
25秒前
朴素羊完成签到 ,获得积分10
26秒前
乐乐应助超帅千万采纳,获得10
26秒前
蓬蒿人完成签到,获得积分10
26秒前
小马甲应助眼睛大冰淇淋采纳,获得10
27秒前
小透明发布了新的文献求助10
28秒前
FashionBoy应助王jj采纳,获得10
29秒前
29秒前
pragmatic完成签到,获得积分10
31秒前
孙芷妍完成签到,获得积分10
31秒前
乐乐应助小东采纳,获得10
32秒前
侦察兵完成签到,获得积分10
32秒前
JKL发布了新的文献求助10
32秒前
今后应助风中的香萱采纳,获得10
34秒前
华仔应助pragmatic采纳,获得10
34秒前
王jj完成签到,获得积分10
35秒前
研友_VZG7GZ应助111采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877125
求助须知:如何正确求助?哪些是违规求助? 6539957
关于积分的说明 15680651
捐赠科研通 4995774
什么是DOI,文献DOI怎么找? 2692324
邀请新用户注册赠送积分活动 1634509
关于科研通互助平台的介绍 1592189