Knowledge Graph Neural Network With Spatial-Aware Capsule for Drug-Drug Interaction Prediction

计算机科学 药品 人工神经网络 人工智能 图形 药物与药物的相互作用 机器学习 数据挖掘 医学 理论计算机科学 药理学
作者
Xiaorui Su,Bo-Wei Zhao,Guodong Li,Jun Zhang,Pengwei Hu,Zhu‐Hong You,Lun Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1771-1781 被引量:9
标识
DOI:10.1109/jbhi.2024.3419015
摘要

Uncovering novel drug-drug interactions (DDIs) plays a pivotal role in advancing drug development and improving clinical treatment. The outstanding effectiveness of graph neural networks (GNNs) has garnered significant interest in the field of DDI prediction. Consequently, there has been a notable surge in the development of network-based computational approaches for predicting DDIs. However, current approaches face limitations in capturing the spatial relationships between neighboring nodes and their higher-level features during the aggregation of neighbor representations. To address this issue, this study introduces a novel model, KGCNN, designed to comprehensively tackle DDI prediction tasks by considering spatial relationships between molecules within the biomedical knowledge graph (BKG). KGCNN is built upon a message-passing GNN framework, consisting of propagation and aggregation. In the context of the BKG, KGCNN governs the propagation of information based on semantic relationships, which determine the flow and exchange of information between different molecules. In contrast to traditional linear aggregators, KGCNN introduces a spatial-aware capsule aggregator, which effectively captures the spatial relationships among neighboring molecules and their higher-level features within the graph structure. The ultimate goal is to leverage these learned drug representations to predict potential DDIs. To evaluate the effectiveness of KGCNN, it undergoes testing on two datasets. Extensive experimental results demonstrate its superiority in DDI predictions and quantified performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yhayiyi发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助20
2秒前
仵一完成签到,获得积分10
3秒前
肥而不腻的羚羊完成签到,获得积分10
3秒前
布丁发布了新的文献求助10
3秒前
鲜橙发布了新的文献求助10
4秒前
4秒前
123发布了新的文献求助10
4秒前
4秒前
5秒前
中国人完成签到,获得积分10
5秒前
lqz07发布了新的文献求助10
6秒前
7秒前
QQQ完成签到,获得积分10
8秒前
善学以致用应助中国人采纳,获得10
9秒前
9秒前
10秒前
王太祖关注了科研通微信公众号
10秒前
11秒前
11秒前
11秒前
Yini应助凶狠的尔蓉采纳,获得50
11秒前
谷晓玲完成签到,获得积分20
11秒前
月亮明星发布了新的文献求助10
12秒前
net80yhm发布了新的文献求助10
12秒前
要减肥的晓曼完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
lqz07完成签到,获得积分10
15秒前
15秒前
领导范儿应助地三鲜采纳,获得10
15秒前
Sharky完成签到,获得积分10
15秒前
yyyy发布了新的文献求助10
16秒前
赘婿应助Teferi采纳,获得10
17秒前
17秒前
ZMTW发布了新的文献求助10
17秒前
7890733发布了新的文献求助10
19秒前
little elvins发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300369
求助须知:如何正确求助?哪些是违规求助? 4448262
关于积分的说明 13845572
捐赠科研通 4333969
什么是DOI,文献DOI怎么找? 2379255
邀请新用户注册赠送积分活动 1374403
关于科研通互助平台的介绍 1340056