Preliminary study on the ability of the machine learning models based on 18F-FDG PET/CT to differentiate between mass-forming pancreatic lymphoma and pancreatic carcinoma

医学 无线电技术 正电子发射断层摄影术 胰腺癌 淋巴瘤 放射科 核医学 PET-CT 人工智能 病理 癌症 内科学 计算机科学
作者
Jian Wang,Yujing Zhou,Jianli Zhou,Hongwei Liu,Xin Li
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:176: 111531-111531 被引量:3
标识
DOI:10.1016/j.ejrad.2024.111531
摘要

Purpose The objective of this study was to preliminarily assess the ability of metabolic parameters and radiomics derived from 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to distinguish mass-forming pancreatic lymphoma from pancreatic carcinoma using machine learning. Methods A total of 88 lesions from 86 patients diagnosed as mass-forming pancreatic lymphoma or pancreatic carcinoma were included and randomly divided into a training set and a validation set at a 4-to-1 ratio. The segmentation of regions of interest was performed using ITK-SNAP software, PET metabolic parameters and radiomics features were extracted using 3Dslicer and PYTHON. Following the selection of optimal metabolic parameters and radiomics features, Logistic regression (LR), support vector machine (SVM), and random forest (RF) models were constructed for PET metabolic parameters, CT radiomics, PET radiomics, and PET/CT radiomics. Model performance was assessed in terms of area under the curve (AUC), accuracy, sensitivity, and specificity in both the training and validation sets. Results Strong discriminative ability observed in all models, with AUC values ranging from 0.727 to 0.978. The highest performance exhibited by the combined PET and CT radiomics features. AUC values for PET/CT radiomics models in the training set were LR 0.994, SVM 0.994, RF 0.989. In the validation set, AUC values were LR 0.909, SVM 0.883, RF 0.844. Conclusion Machine learning models utilizing the metabolic parameters and radiomics of 18F-FDG PET/CT show promise in distinguishing between pancreatic carcinoma and mass-forming pancreatic lymphoma. Further validation on a larger cohort is necessary before practical implementation in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武雨寒发布了新的文献求助10
刚刚
直率苡发布了新的文献求助10
1秒前
熊旺林发布了新的文献求助10
1秒前
Orange应助hjy采纳,获得10
2秒前
高高的无颜关注了科研通微信公众号
2秒前
科研通AI5应助Rabbit采纳,获得50
2秒前
大模型应助冰封火种采纳,获得10
4秒前
4秒前
科目三应助propofol采纳,获得10
7秒前
sx发布了新的文献求助10
8秒前
8秒前
8秒前
林梓峰完成签到,获得积分10
9秒前
mix完成签到 ,获得积分10
9秒前
9秒前
xz发布了新的文献求助10
9秒前
BL发布了新的文献求助10
9秒前
10秒前
停停走走发布了新的文献求助20
10秒前
Boa完成签到,获得积分10
10秒前
小李完成签到,获得积分20
11秒前
11秒前
小二郎应助小欣采纳,获得10
11秒前
科研通AI6应助阳光青文采纳,获得10
11秒前
今何在完成签到,获得积分20
12秒前
13秒前
14秒前
15秒前
dydydyd完成签到,获得积分10
15秒前
认真搬砖的蜡笔小新给认真搬砖的蜡笔小新的求助进行了留言
15秒前
16秒前
xiaojinzi发布了新的文献求助10
16秒前
666完成签到,获得积分10
16秒前
程远山发布了新的文献求助30
17秒前
17秒前
18秒前
20秒前
CodeCraft应助停停走走采纳,获得10
20秒前
enli完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028605
求助须知:如何正确求助?哪些是违规求助? 4264449
关于积分的说明 13293731
捐赠科研通 4072538
什么是DOI,文献DOI怎么找? 2227489
邀请新用户注册赠送积分活动 1235971
关于科研通互助平台的介绍 1160275