Epi-Curriculum: Episodic Curriculum Learning for Low-Resource Domain Adaptation in Neural Machine Translation

课程 适应(眼睛) 计算机科学 域适应 领域(数学分析) 资源(消歧) 神经适应 机器翻译 人工智能 心理学 认知科学 神经科学 教育学 数学分析 计算机网络 数学 分类器(UML)
作者
Keyu Chen,Di Zhuang,Mingchen Li,J. Morris Chang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tai.2024.3396125
摘要

Neural Machine Translation (NMT) models have achieved comparable results to human translation with a large number of parallel corpora available. However, their performance remains poor when translating on new domains with a limited number of data. Recent studies either only show the model's robustness to domain shift or the superiority in adapting to new domains with a limited number of data. A solution for addressing both the model's robustness and adaptability is underexplored. In this paper, we present a novel approach Epi-Curriculum to address low-resource domain adaptation (DA), which contains a new episodic training framework along with a denoised curriculum learning. Our episodic training framework enhances the model's robustness to domain shift by episodically exposing the encoder/decoder to an inexperienced decoder/encoder. The denoised curriculum learning filters the noised data and further improves the model's adaptability by gradually guiding the learning process from easy to more difficult tasks. Extensive experiments have been conducted on English-German (En-De), English-Romanian (En-Ro), and English-French (En-Fr) translation tasks. Our results show that: (i) Epi-Curriculum outperforms the baseline on unseen and seen domains by 2.28 and 3.64 BLEU score on En-De task, and 3.32 and 2.23 on En-Ro task; (ii) Our episodic training framework outperforms the recent popular meta-learning framework in terms of robustness to domain shift and achieves comparable adaptability to new domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助阮阮采纳,获得10
4秒前
Benji完成签到,获得积分10
11秒前
小陈发布了新的文献求助10
13秒前
Lucas应助杏仁采纳,获得10
16秒前
香蕉觅云应助超帅发夹采纳,获得10
17秒前
芽芽豆完成签到 ,获得积分10
28秒前
科研通AI6.1应助nini采纳,获得10
31秒前
善学以致用应助nini采纳,获得10
31秒前
溪山果林完成签到,获得积分10
36秒前
悄悄.完成签到 ,获得积分0
43秒前
46秒前
斯文败类应助Eamin采纳,获得10
46秒前
Mid发布了新的文献求助10
48秒前
48秒前
眯眯眼的太阳完成签到 ,获得积分10
50秒前
51秒前
lzy完成签到,获得积分20
52秒前
hsing完成签到,获得积分10
53秒前
54秒前
suoyu发布了新的文献求助10
56秒前
Lucas应助王博林采纳,获得10
56秒前
MUYI完成签到,获得积分10
56秒前
Kevin完成签到,获得积分10
57秒前
58秒前
59秒前
59秒前
1分钟前
23完成签到,获得积分20
1分钟前
Hello应助曾经的嘉熙采纳,获得10
1分钟前
1分钟前
杏仁发布了新的文献求助10
1分钟前
勤奋花瓣完成签到 ,获得积分10
1分钟前
Mid完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
李明完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851979
求助须知:如何正确求助?哪些是违规求助? 6275055
关于积分的说明 15627539
捐赠科研通 4967924
什么是DOI,文献DOI怎么找? 2678842
邀请新用户注册赠送积分活动 1623057
关于科研通互助平台的介绍 1579488