亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Peritumoral and Intratumoral Texture Features Based on Multiparametric MRI and Multiple Machine Learning Methods to Preoperatively Evaluate the Pathological Outcomes of Pancreatic Cancer

随机森林 无线电技术 逻辑回归 医学 Lasso(编程语言) 胰腺癌 人工智能 特征选择 接收机工作特性 计算机科学 支持向量机 磁共振成像 人口 放射科 模式识别(心理学) 核医学 癌症 机器学习 内科学 万维网 环境卫生
作者
Ni Xie,Xuhui Fan,Desheng Chen,Jingwen Chen,Hongwei Yu,Meijuan He,Hao Liu,Xiaorui Yin,Baiwen Li,Han Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (2): 379-391 被引量:12
标识
DOI:10.1002/jmri.28538
摘要

Background Radiomics‐based preoperative evaluation of lymph node metastasis (LNM) and histological grade (HG) might facilitate the decision‐making for pancreatic cancer and further efforts are needed to develop effective models. Purpose To develop multiparametric MRI (MP‐MRI)‐based radiomics models to evaluate LNM and HG. Study Type Retrospective. Population The pancreatic cancer patients from the main center ( n = 126) were assigned to the training and validation sets at a 4:1 ratio. The patients from the other center ( n = 40) served as external test sets. Field Strength/Sequence A 3.0 T and 1.5 T / T2 ‐weighted imaging, diffusion‐weighted imaging, and dynamic contrast enhancement T1 ‐weighted imaging. Assessment A total of 10,686 peritumoral and intratumoral radiomics features were extracted which contained first‐order, shape‐based, and texture features. The following three‐step method was applied to reduce the feature dimensionality: SelectKBest (a function from scikit‐learn package), least absolute shrinkage and selection operator (LASSO), and recursive feature elimination based on random forest (RFE‐RF). Six classifiers (random forest, logistic regression, support vector machine, K‐nearest neighbor, decision tree, and XGBOOST) were trained and selected based on their performance to construct the clinical, radiomics, and combination models. Statistical Tests Delong's test was used to compare the models' performance. P value less than 0.05 was considered significant. Results Twelve significant features for LNM and 11 features for HG were obtained. Random forest and logistic regression performed better than the other classifiers in evaluating LNM and HG, respectively, according to the surgical pathological results. The best performance was obtained with the models that combined peritumoral and intratumoral features with area under curve (AUC) values of 0.944 and 0.892 in the validation and external test sets for HG and 0.924 and 0.875 for LNM. Data Conclusion Radiomics holds the potential to evaluate LNM and HG of pancreatic cancer. The combination of peritumoral and intratumoral features will make models more accurate. Evidence Level 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
无情的友容完成签到 ,获得积分10
26秒前
32秒前
40秒前
kk99123应助科研通管家采纳,获得10
41秒前
1分钟前
鲤鱼安青完成签到 ,获得积分10
1分钟前
1分钟前
Xulun完成签到,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
果果发布了新的文献求助10
1分钟前
GankhuyagJavzan完成签到,获得积分10
2分钟前
CipherSage应助果果采纳,获得10
2分钟前
2分钟前
2分钟前
juan完成签到 ,获得积分10
2分钟前
武玉坤完成签到,获得积分10
2分钟前
2分钟前
小羊同学发布了新的文献求助10
2分钟前
小羊同学完成签到,获得积分10
2分钟前
在水一方应助读书的时候采纳,获得10
3分钟前
3分钟前
3分钟前
奇点完成签到 ,获得积分10
3分钟前
科目三应助读书的时候采纳,获得10
3分钟前
4分钟前
4分钟前
健康的大船完成签到 ,获得积分10
4分钟前
科目三应助读书的时候采纳,获得10
5分钟前
5分钟前
5分钟前
yshj完成签到 ,获得积分10
5分钟前
bkagyin应助读书的时候采纳,获得10
5分钟前
5分钟前
lilei完成签到 ,获得积分10
5分钟前
5分钟前
车乞发布了新的文献求助10
5分钟前
完美世界应助读书的时候采纳,获得10
5分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4099343
求助须知:如何正确求助?哪些是违规求助? 3636850
关于积分的说明 11525769
捐赠科研通 3346421
什么是DOI,文献DOI怎么找? 1839269
邀请新用户注册赠送积分活动 906501
科研通“疑难数据库(出版商)”最低求助积分说明 823836