The human-following strategy for mobile robots in mixed environments

计算机科学 机器人 移动机器人 任务(项目管理) 人机交互 人工智能 障碍物 功能(生物学) 计算机视觉 管理 进化生物学 政治学 法学 经济 生物
作者
Nguyen Van Toan,Minh Do Hoang,Phan Bùi Khôi,Soo-Yeong Yi
出处
期刊:Robotics and Autonomous Systems [Elsevier BV]
卷期号:160: 104317-104317 被引量:11
标识
DOI:10.1016/j.robot.2022.104317
摘要

The robot behavior strategy is considered as a crucial part in the human-following task to help the robot maintain an appropriate distance and orientation to the selected target person (STP) with a smooth and safe manner. As usual, the robot is uniquely considered to follow the STP in a specific class of environments, such as unknown environments (non-mapped environments) or known environments (mapped environments). However, in real-life applications, the robot is sometimes requested to follow the STP in various types of environments, both in known and unknown ones. This observation raises the need to propose an alternative method to challenge the mentioned issue, as well as to break the current limit of the human-following function. In this paper, a new approach for the human-following strategy is proposed in which the mobile robot is enabled to follow the STP in mixed environments (non-mapped and mapped). In non-mapped environments, only the STP and the obstacle information with respect to the robot local coordinates are considered, whose purpose is to make the robot work without any prior understandings about its working environment. However, after the robot entered mapped environments, its prior knowledge of the working environment is leveraged to fulfill some additional requirements during the cooperation, such as the mobile robot in factories is not allowed to enter some specific areas even when the STP is executing technical tasks inside. Additionally, in this paper, a human-like inference mechanism is also introduced for the human-following strategy by using an extended hedge algebras. The proposed method is experimentally verified both in factories and laboratories. Demo Video Link: https://www.youtube.com/watch?v=YGrWU6ldKuw Since real videos in the factory are not allowed to publish, only visualization (in Rviz) is presented for demos in such kinds of environments. The visualization is synchronous with the real executions of the human–robot interactions. The robot used in the factory is an autonomous mobile robot (dimension 0.5 (m) ×1.0 (m), weight 120 (kg), carrying a tool cabinet around 300(kg))). The mobile robot is following the worker to support them during the technical processes in the car production line. In the video, the robot is represented by a green rectangular, and the STP is represented by a cylinder (with a sphere on its head) The events in the demo video are described more clearly in Appendix A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿琪完成签到,获得积分10
5秒前
忧虑的静柏完成签到 ,获得积分10
5秒前
cdercder应助wjy采纳,获得10
9秒前
顺利毕业完成签到 ,获得积分10
13秒前
19秒前
离线完成签到 ,获得积分10
30秒前
GSQ完成签到,获得积分20
31秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
33秒前
chenpaul1983完成签到,获得积分10
36秒前
xy完成签到 ,获得积分10
37秒前
田様应助周小鱼采纳,获得10
38秒前
JJ完成签到 ,获得积分10
38秒前
墨扬完成签到,获得积分10
38秒前
Dong完成签到 ,获得积分10
44秒前
45秒前
滕皓轩发布了新的文献求助30
45秒前
xiaosui完成签到 ,获得积分10
45秒前
周全完成签到 ,获得积分10
47秒前
周小鱼发布了新的文献求助10
49秒前
49秒前
51秒前
zhang完成签到 ,获得积分10
51秒前
英姑应助滕皓轩采纳,获得30
53秒前
fanfan发布了新的文献求助10
56秒前
H-kevin.完成签到 ,获得积分10
58秒前
不良帅完成签到,获得积分10
1分钟前
一一完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助科研通管家采纳,获得100
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
weng完成签到,获得积分10
1分钟前
SX0000完成签到 ,获得积分10
1分钟前
speed完成签到 ,获得积分10
1分钟前
1分钟前
猪猪女孩完成签到,获得积分10
1分钟前
celia完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777682
求助须知:如何正确求助?哪些是违规求助? 3323099
关于积分的说明 10213003
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667382
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758273