Feature Aggregation and Propagation Network for Camouflaged Object Detection

计算机科学 特征(语言学) 背景(考古学) 编码器 水准点(测量) 人工智能 分割 模式识别(心理学) 骨干网 目标检测 边界(拓扑) 图像分割 对象(语法) 计算机视觉 数学 数学分析 哲学 古生物学 操作系统 生物 语言学 地理 计算机网络 大地测量学
作者
Tao Zhou,Yi Zhou,Chen Gong,Jian Yang,Yu Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 7036-7047 被引量:194
标识
DOI:10.1109/tip.2022.3217695
摘要

Camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment, which has attracted increasing attention over the past decades. Although several COD methods have been developed, they still suffer from unsatisfactory performance due to the intrinsic similarities between the foreground objects and background surroundings. In this paper, we propose a novel Feature Aggregation and Propagation Network (FAP-Net) for camouflaged object detection. Specifically, we propose a Boundary Guidance Module (BGM) to explicitly model the boundary characteristic, which can provide boundary-enhanced features to boost the COD performance. To capture the scale variations of the camouflaged objects, we propose a Multi-scale Feature Aggregation Module (MFAM) to characterize the multi-scale information from each layer and obtain the aggregated feature representations. Furthermore, we propose a Cross-level Fusion and Propagation Module (CFPM). In the CFPM, the feature fusion part can effectively integrate the features from adjacent layers to exploit the cross-level correlations, and the feature propagation part can transmit valuable context information from the encoder to the decoder network via a gate unit. Finally, we formulate a unified and end-to-end trainable framework where cross-level features can be effectively fused and propagated for capturing rich context information. Extensive experiments on three benchmark camouflaged datasets demonstrate that our FAP-Net outperforms other state-of-the-art COD models. Moreover, our model can be extended to the polyp segmentation task, and the comparison results further validate the effectiveness of the proposed model in segmenting polyps. The source code and results will be released at https://github.com/taozh2017/FAPNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Georges-09发布了新的文献求助10
刚刚
2秒前
3秒前
Yan发布了新的文献求助10
5秒前
周小浪完成签到,获得积分10
5秒前
wyq完成签到 ,获得积分10
6秒前
6秒前
Uaena发布了新的文献求助10
6秒前
7秒前
8秒前
Raynald完成签到,获得积分10
9秒前
bogula1112完成签到 ,获得积分10
9秒前
10秒前
上官若男应助大胆的蛋挞采纳,获得10
10秒前
10秒前
lift发布了新的文献求助10
12秒前
lk发布了新的文献求助10
13秒前
知己完成签到,获得积分10
15秒前
Jasper应助老高采纳,获得10
15秒前
tt完成签到,获得积分10
15秒前
sterkiller发布了新的文献求助10
15秒前
胖虎发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助明理的逍遥采纳,获得10
16秒前
Elige完成签到,获得积分10
17秒前
852应助巴音布鲁克采纳,获得10
18秒前
wanci应助lk采纳,获得10
19秒前
小马甲应助yannick采纳,获得10
20秒前
展锋发布了新的文献求助10
21秒前
22秒前
852应助cizzz采纳,获得10
22秒前
wanci应助花凉采纳,获得10
23秒前
23秒前
沿岸有贝壳完成签到,获得积分10
23秒前
万能图书馆应助小李采纳,获得10
23秒前
芸遥完成签到,获得积分10
23秒前
胖虎完成签到,获得积分10
24秒前
llf关闭了llf文献求助
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308512
求助须知:如何正确求助?哪些是违规求助? 4453661
关于积分的说明 13857726
捐赠科研通 4341377
什么是DOI,文献DOI怎么找? 2383861
邀请新用户注册赠送积分活动 1378491
关于科研通互助平台的介绍 1346482