已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut

计算机科学 车辆路径问题 贝叶斯概率 水准点(测量) 迭代函数 数学优化 运筹学 特征(语言学) 约束(计算机辅助设计) 封面(代数) 钥匙(锁) 布线(电子设计自动化) 人工智能 数学 工程类 计算机网络 数学分析 语言学 哲学 大地测量学 计算机安全 地理 机械工程 几何学
作者
Alexandre M. Florio,Michel Gendreau,Richard F. Hartl,Stefan Minner,Thibaut Vidal
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:306 (3): 1081-1093 被引量:10
标识
DOI:10.1016/j.ejor.2022.10.045
摘要

We consider the vehicle routing problem with stochastic demands (VRPSD), a stochastic variant of the well-known VRP in which demands are only revealed upon arrival of the vehicle at each customer. Motivated by the significant recent progress on VRPSD research, we begin this paper by summarizing the key new results and methods for solving the problem. In doing so, we discuss the main challenges associated with solving the VRPSD under the chance-constraint and the restocking-based perspectives. Once we cover the current state-of-the-art, we introduce two major methodological contributions. First, we present a branch-price-and-cut (BP&C) algorithm for the VRPSD under optimal restocking. The method, which is based on the pricing of elementary routes, compares favorably with previous algorithms and allows the solution of several open benchmark instances. Second, we develop a demand model for dealing with correlated customer demands. The central concept in this model is the “external factor”, which represents unknown covariates that affect all demands. We present a Bayesian-based, iterated learning procedure to refine our knowledge about the external factor as customer demands are revealed. This updated knowledge is then used to prescribe optimal replenishment decisions under demand correlation. Computational results demonstrate the efficiency of the new BP&C method and show that cost savings above 10% may be achieved when restocking decisions take account of demand correlation. Lastly, we motivate a few research perspectives that, as we believe, should shape future research on the VRPSD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的依琴完成签到,获得积分10
刚刚
万能图书馆应助莫妮卡.宾采纳,获得10
1秒前
soumei完成签到,获得积分10
2秒前
赘婿应助yeggoo采纳,获得10
2秒前
猪猪hero应助SunGuoping采纳,获得10
2秒前
桐桐应助新一采纳,获得10
3秒前
称心曼安完成签到 ,获得积分10
3秒前
Orange应助wmk采纳,获得10
5秒前
无心的哑铃完成签到 ,获得积分10
5秒前
共享精神应助阿黎采纳,获得10
5秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
mary关注了科研通微信公众号
6秒前
骤世界完成签到 ,获得积分10
7秒前
Maigret完成签到,获得积分10
8秒前
头孢西丁完成签到 ,获得积分10
8秒前
krajicek完成签到,获得积分10
9秒前
我好想睡完成签到,获得积分10
10秒前
Eason小川发布了新的文献求助10
11秒前
13秒前
都是发布了新的文献求助10
13秒前
行走人生完成签到,获得积分10
13秒前
何处西风无酒旗完成签到,获得积分10
15秒前
zilhua完成签到,获得积分10
15秒前
李新光完成签到 ,获得积分10
15秒前
莫妮卡.宾发布了新的文献求助10
17秒前
18秒前
落晖完成签到 ,获得积分10
18秒前
有思想发布了新的文献求助10
18秒前
766465完成签到 ,获得积分0
18秒前
羊羊完成签到,获得积分20
21秒前
上官若男应助都是采纳,获得10
21秒前
苹果白凡完成签到,获得积分10
21秒前
忧虑的绮梅完成签到,获得积分10
22秒前
Hayley发布了新的文献求助30
25秒前
莫妮卡.宾完成签到,获得积分10
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833637
求助须知:如何正确求助?哪些是违规求助? 3376134
关于积分的说明 10491700
捐赠科研通 3095630
什么是DOI,文献DOI怎么找? 1704502
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771775