持久性(不连续性)
数学
度量(数据仓库)
消光(光学矿物学)
应用数学
功能性反应
人口
理论(学习稳定性)
人口模型
白噪声
统计物理学
捕食
捕食者
统计
计算机科学
生态学
物理
生物
工程类
社会学
人口学
岩土工程
光学
机器学习
数据库
标识
DOI:10.1142/s1793524522501169
摘要
In this paper, we study a stochastic predator–prey model with Beddington–DeAngelis functional response and time-periodic coefficients. By analyzing the stability of the solution on the boundary and some stochastic estimates, the threshold conditions for the time-average persistence in probability and extinction of each population are established. Furthermore, the existence of a unique periodic measure of the model is also presented under the condition of the time-average persistence in probability of the model. Several numerical simulations are given to verify the effectiveness of the theoretical results and to illustrate the effects of the white noises on the persistence and periodic measure of the model.
科研通智能强力驱动
Strongly Powered by AbleSci AI