清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莲子清凉下火完成签到,获得积分10
4秒前
西安浴日光能赵炜完成签到,获得积分10
5秒前
jjy完成签到,获得积分10
13秒前
个性仙人掌完成签到 ,获得积分10
15秒前
Dongjie完成签到,获得积分10
22秒前
蔡从安完成签到,获得积分20
25秒前
29秒前
秋夜临完成签到,获得积分0
35秒前
君看一叶舟完成签到 ,获得积分10
37秒前
CHEN完成签到 ,获得积分10
38秒前
cy完成签到 ,获得积分10
45秒前
cdm700完成签到,获得积分10
52秒前
ramsey33完成签到 ,获得积分10
1分钟前
坦率的从波完成签到 ,获得积分10
1分钟前
NexusExplorer应助吴Sehun采纳,获得30
1分钟前
rockyshi完成签到 ,获得积分10
1分钟前
六一儿童节完成签到 ,获得积分0
1分钟前
fighting完成签到 ,获得积分10
1分钟前
拼搏的羊青完成签到 ,获得积分10
1分钟前
bonesaq完成签到,获得积分10
1分钟前
1分钟前
吴Sehun发布了新的文献求助30
1分钟前
Ray完成签到 ,获得积分10
1分钟前
fox发布了新的文献求助10
1分钟前
1分钟前
1分钟前
shineedou发布了新的文献求助10
1分钟前
科研通AI5应助PeterLin采纳,获得10
2分钟前
夜雨完成签到 ,获得积分10
2分钟前
追梦完成签到,获得积分10
2分钟前
如意的馒头完成签到 ,获得积分10
2分钟前
hadfunsix完成签到 ,获得积分10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
科研通AI5应助PeterLin采纳,获得10
2分钟前
ggg完成签到 ,获得积分10
2分钟前
包容的剑完成签到 ,获得积分10
2分钟前
科研通AI5应助PeterLin采纳,获得30
2分钟前
小v完成签到 ,获得积分10
3分钟前
王波完成签到 ,获得积分10
3分钟前
活泼的大船完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4411187
求助须知:如何正确求助?哪些是违规求助? 3895067
关于积分的说明 12115675
捐赠科研通 3540207
什么是DOI,文献DOI怎么找? 1942724
邀请新用户注册赠送积分活动 983338
科研通“疑难数据库(出版商)”最低求助积分说明 879919