Intelligent Joint Actuator Fault Diagnosis for Heavy-duty Industrial Robots

执行机构 重型的 机器人 接头(建筑物) 断层(地质) 计算机科学 故障检测与隔离 职责 控制工程 工程类 人工智能 汽车工程 结构工程 地质学 哲学 神学 地震学
作者
Jianuo Wang,Xudong Wang,Yaonan Wang,Yiming Sun,Gangfeng Sun
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (9): 15292-15301
标识
DOI:10.1109/jsen.2024.3377234
摘要

A data-driven intelligent fault diagnosis algorithm is designed in this paper for heavy-duty industrial-robots (I-Rs), which aims accurately detecting and identifying joint actuator faults that may occur during the operation of industrial heavy-duty robot arms. Considering the fact that faulty samples of industrial robots are difficult to access, a simulation model-based strategy is adopted in this paper. With the help of Euler-Lagrange method, dynamics of heavy-duty industrial robots are established with considering the joint flexibility. By injecting fault in different joint actuators, unbalanced normal and faulty samples are obtained, based on which intelligent diagnosis model is constructed. Subsequently, a composite neural network model, LSTM-CNN, is proposed, which combines the merits of long short-term memory network (LSTM) and convolutional neural network (CNN). The constructed LSTM-CNN model is then trained and validated using generated data to achieve fault diagnosis and identification of actuators of heavy industrial robots. Finally, the constructed intelligent fault diagnosis model is experimentally validated, and result analysis demonstrates that the proposed algorithm shows superior accuracy and precision in diagnosing single joint and multiple joints faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助ikun采纳,获得10
1秒前
云鹤完成签到 ,获得积分10
2秒前
上官若男应助AltairKing采纳,获得10
2秒前
日上三竿完成签到,获得积分10
3秒前
ELend完成签到,获得积分10
4秒前
4秒前
黄科研完成签到,获得积分10
4秒前
coolkid应助顺遂采纳,获得10
5秒前
5秒前
欣欣发布了新的文献求助10
5秒前
秀丽涵双发布了新的文献求助10
6秒前
7秒前
TGU的小马同学完成签到 ,获得积分10
7秒前
大模型应助夜雨听风眠z采纳,获得10
8秒前
越战越勇完成签到,获得积分10
9秒前
9秒前
9秒前
rcrc111发布了新的文献求助30
10秒前
Chacha发布了新的文献求助10
10秒前
AltairKing发布了新的文献求助10
12秒前
HEIKU应助厚脸皮的含羞草采纳,获得10
12秒前
12秒前
Taozhi完成签到,获得积分10
13秒前
小二郎应助HAHAHAHA采纳,获得10
14秒前
zho发布了新的文献求助10
14秒前
AltairKing完成签到,获得积分10
15秒前
U87发布了新的文献求助10
17秒前
cdercder应助Taozhi采纳,获得10
17秒前
17秒前
18秒前
Chacha完成签到,获得积分10
19秒前
rcrc111完成签到 ,获得积分10
19秒前
自然代亦完成签到 ,获得积分10
20秒前
21秒前
22秒前
yjihn发布了新的文献求助10
22秒前
科研通AI2S应助Taozhi采纳,获得10
22秒前
23秒前
zqh740发布了新的文献求助10
24秒前
科研通AI5应助小周采纳,获得10
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838293
求助须知:如何正确求助?哪些是违规求助? 3380617
关于积分的说明 10515159
捐赠科研通 3100208
什么是DOI,文献DOI怎么找? 1707388
邀请新用户注册赠送积分活动 821709
科研通“疑难数据库(出版商)”最低求助积分说明 772890