活力测定
基因敲除
细胞凋亡
流式细胞术
基因沉默
细胞
分子生物学
程序性细胞死亡
氧化应激
细胞生物学
癌症研究
生物
内分泌学
生物化学
基因
作者
Mingcheng Fang,Ting Li,Zhiyong Wu
出处
期刊:Shock
[Lippincott Williams & Wilkins]
日期:2024-04-09
卷期号:62 (2): 201-207
被引量:3
标识
DOI:10.1097/shk.0000000000002373
摘要
Background: Myocardial infarction (MI) is a severe condition that typically results from the ischemia and necrosis of heart muscle. Kruppel-like factor 6 (KLF6) can aggravate myocardial ischemia/reperfusion injury. This work aims to reveal its role and mechanism in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. Methods: Human cardiomyocyte (AC16) was exposed to hypoxic treatment to mimic MI-like cell injury. mRNA expression levels of KLF6 and WT1-associated protein (WTAP) were detected by quantitative real-time polymerase chain reaction. Protein expression was detected by western blotting assay. Cell viability was assessed by CCK-8 assay. Cell apoptosis and cell cycle were investigated by flow cytometry. Enzyme-linked immunosorbent assays were conducted to detect IL-1β, TNF-α and IL-6 levels. Fe 2+ colorimetric assay kit was used to detect Fe 2+ level. MDA Content Assay Kit was used to detect MDA level. Cellular ROS Assay kit was applied to assess ROS level. The association of KLF6 and WTAP was identified by RNA immunoprecipitation assay and dual-luciferase reporter assay. Results: KLF6 and WTAP expression at mRNA and protein levels were significantly upregulated in serum samples of MI patients and H/R-induced AC16 cells when compared with control groups. KLF6 silencing attenuated H/R-induced AC16 cell apoptosis, inflammatory response, oxidative stress, and ferroptosis. Additionally, WTAP stabilized KLF6 mRNA by regulating its m6A modification. Furthermore, WTAP knockdown rescued H/R-induced AC16 cell apoptosis, inflammatory response, oxidative stress, and ferroptosis by decreasing KLF6 expression. Conclusion: WTAP-mediated m6A modification of KLF6 aggravated hypoxia/reoxygenation-induced apoptosis, inflammatory response, oxidative stress, and ferroptosis of human cardiomyocytes, providing a therapeutic strategy for MI.
科研通智能强力驱动
Strongly Powered by AbleSci AI