Using machine learning methods to study the tumour microenvironment and its biomarkers in osteosarcoma metastasis

特征选择 支持向量机 机器学习 转移 计算机科学 随机森林 人工智能 计算生物学 基因 朴素贝叶斯分类器 梯度升压 生物 医学 癌症 内科学 遗传学
作者
Guangyuan Liu,Shaochun Wang,Jinhui Liu,Jiangli Zhang,Xiqing Pan,Xiaoxi Fan,Tingting Shao,Yan Sun
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (7): e29322-e29322
标识
DOI:10.1016/j.heliyon.2024.e29322
摘要

Abstract

Background

The long-term prognosis for patients with osteosarcoma (OS) metastasis remains unfavourable, highlighting the urgent need for research that explores potential biomarkers using innovative methodologies.

Methods

This study explored potential biomarkers for OS metastasis by analysing data from the Cancer Genome Atlas Program (TCGA) and Gene Expression Omnibus (GEO) databases. The synthetic minority oversampling technique (SMOTE) was employed to tackle class imbalances, while genes were selected using four feature selection algorithms (Monte Carlo feature selection [MCFS], Borota, minimum-redundancy maximum-relevance [mRMR], and light gradient-boosting machine [LightGBM]) based on the gene expression matrix. Four machine learning (ML) algorithms (support vector machine [SVM], extreme gradient boosting [XGBoost], random forest [RF], and k-nearest neighbours [kNN]) were utilized to determine the optimal number of genes for building the model. Interpretable machine learning (IML) was applied to construct prediction networks, revealing potential relationships among the selected genes. Additionally, enrichment analysis, survival analysis, and immune infiltration were performed on the featured genes.

Results

In DS1, DS2, and DS3, the IML algorithm identified 53, 45, and 46 features, respectively. Using the merged gene set, we obtained a total of 79 interpretable prediction rules for OS metastasis. We subsequently conducted an in-depth investigation on 39 crucial molecules associated with predicting OS metastasis, elucidating their roles within the tumour microenvironment. Importantly, we found that certain genes act as both predictors and differentially expressed genes. Finally, our study unveiled statistically significant differences in survival between the high and low expression groups of TRIP4, S100A9, SELL and SLC11A1, and there was a certain correlation between these genes and 22 various immune cells.

Conclusions

The biomarkers discovered in this study hold significant implications for personalized therapies, potentially enhancing the clinical prognosis of patients with OS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果蜗牛完成签到 ,获得积分10
1秒前
yoyo完成签到 ,获得积分10
2秒前
bramble完成签到 ,获得积分10
2秒前
JamesPei应助lulu采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
烟花应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得100
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
xliiii完成签到,获得积分10
5秒前
Allisu完成签到,获得积分10
7秒前
科研通AI5应助windflake采纳,获得10
7秒前
水濑心源完成签到,获得积分10
8秒前
yunxiao完成签到 ,获得积分10
8秒前
Vicky完成签到 ,获得积分10
9秒前
10秒前
zzh12138发布了新的文献求助10
10秒前
充电宝应助bosszjw采纳,获得10
12秒前
fengjingjun完成签到,获得积分10
13秒前
13秒前
木瓜小五哥完成签到,获得积分10
15秒前
16秒前
19秒前
Tumbleweed668发布了新的文献求助10
19秒前
asdwind发布了新的文献求助10
20秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777801
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213817
捐赠科研通 3038554
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275