Coarse-to-Fine Image Aesthetics Assessment With Dynamic Attribute Selection

计算机科学 选择(遗传算法) 计算机视觉 图像(数学) 人工智能 美学 艺术
作者
Yipo Huang,Leida Li,Pengfei Chen,Jinjian Wu,Yuzhe Yang,Yaqian Li,Guangming Shi
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9316-9329 被引量:12
标识
DOI:10.1109/tmm.2024.3389452
摘要

Image aesthetics assessment (IAA) is an interesting but challenging task, owing to the ineffable nature of human sense of beauty. The study of IAA has evolved from simple binary classification to more complex score regression and distribution prediction. It is effortless for people to perform aesthetic binary classification, i.e. , aesthetically pleasing or not. However, further judgment on the fine-level scalar aesthetic score is complex and typically determined by aesthetic attributes presented in the image, such as content, lighting and color. Motivated by the above facts, this paper presents a Coarse-to-fine image Aesthetics assessment model guided by Dynamic Attribute Selection, dubbed CADAS. The underlying idea is to simulate the process of human aesthetic perception by performing coarse-to-fine aesthetic reasoning. Specifically, a hierarchical AttributeNet is first pre-trained by imitating the staged mechanism of human aesthetic experience, producing the candidate aesthetic attributes. Then, an AestheticNet is introduced to perform the coarse-level binary classification, based on which a confidence-based attribute selection strategy is designed to dynamically pick out the dominant aesthetic attributes from the candidate ones. Finally, a self-attention-based FusionNet is designed to explore the interaction between dominant aesthetic attributes and aesthetic features, producing the fine-level aesthetic prediction. Extensive experiments demonstrate that the proposed model is superior to the state-of-the-arts. Furthermore, CADAS is also able to output the dominant aesthetic attributes in images, facilitating model explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
小二郎应助陈秋采纳,获得10
8秒前
高大威猛小帅完成签到 ,获得积分10
9秒前
9秒前
风中的向卉完成签到 ,获得积分10
11秒前
14秒前
laber完成签到,获得积分0
17秒前
24秒前
lizh187完成签到 ,获得积分10
28秒前
白日焰火完成签到 ,获得积分10
36秒前
37秒前
dracovu完成签到,获得积分10
39秒前
40秒前
joeqin完成签到,获得积分10
41秒前
zzh完成签到 ,获得积分10
42秒前
左丘映易完成签到,获得积分0
43秒前
43秒前
孤独听雨的猫完成签到 ,获得积分10
43秒前
Yang完成签到 ,获得积分10
47秒前
陈秋发布了新的文献求助10
48秒前
51秒前
sfwrbh发布了新的文献求助10
52秒前
None完成签到 ,获得积分10
59秒前
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
哥哥完成签到,获得积分10
1分钟前
随遇而安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
柯彦完成签到 ,获得积分10
1分钟前
大气建辉完成签到 ,获得积分10
1分钟前
xybjt完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Diaory2023完成签到 ,获得积分0
1分钟前
四月完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
上善若水呦完成签到 ,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4149920
求助须知:如何正确求助?哪些是违规求助? 3686015
关于积分的说明 11643539
捐赠科研通 3379020
什么是DOI,文献DOI怎么找? 1854527
邀请新用户注册赠送积分活动 916637
科研通“疑难数据库(出版商)”最低求助积分说明 830495