亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Coarse-to-Fine Image Aesthetics Assessment With Dynamic Attribute Selection

计算机科学 选择(遗传算法) 感知 二进制数 计算机视觉 过程(计算) 图像(数学) 人工智能 美学 审美体验 简单(哲学) 机制(生物学)
作者
Yipo Huang,Leida Li,Pengfei Chen,Jinjian Wu,Yuzhe Yang,Yaqian Li,Guangming Shi
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9316-9329 被引量:19
标识
DOI:10.1109/tmm.2024.3389452
摘要

Image aesthetics assessment (IAA) is an interesting but challenging task, owing to the ineffable nature of human sense of beauty. The study of IAA has evolved from simple binary classification to more complex score regression and distribution prediction. It is effortless for people to perform aesthetic binary classification, i.e. , aesthetically pleasing or not. However, further judgment on the fine-level scalar aesthetic score is complex and typically determined by aesthetic attributes presented in the image, such as content, lighting and color. Motivated by the above facts, this paper presents a Coarse-to-fine image Aesthetics assessment model guided by Dynamic Attribute Selection, dubbed CADAS. The underlying idea is to simulate the process of human aesthetic perception by performing coarse-to-fine aesthetic reasoning. Specifically, a hierarchical AttributeNet is first pre-trained by imitating the staged mechanism of human aesthetic experience, producing the candidate aesthetic attributes. Then, an AestheticNet is introduced to perform the coarse-level binary classification, based on which a confidence-based attribute selection strategy is designed to dynamically pick out the dominant aesthetic attributes from the candidate ones. Finally, a self-attention-based FusionNet is designed to explore the interaction between dominant aesthetic attributes and aesthetic features, producing the fine-level aesthetic prediction. Extensive experiments demonstrate that the proposed model is superior to the state-of-the-arts. Furthermore, CADAS is also able to output the dominant aesthetic attributes in images, facilitating model explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助大气奇异果采纳,获得10
2秒前
搜集达人应助Gaopkid采纳,获得10
6秒前
6秒前
shinn发布了新的文献求助10
11秒前
16秒前
壮观的海豚完成签到 ,获得积分10
18秒前
Gaopkid发布了新的文献求助10
19秒前
21秒前
鱼肠发布了新的文献求助10
25秒前
隐形曼青应助霓霓采纳,获得10
27秒前
可爱的函函应助hu采纳,获得10
33秒前
无花果应助科研通管家采纳,获得10
36秒前
Zzx完成签到 ,获得积分10
52秒前
李爱国应助hu采纳,获得10
55秒前
思柔完成签到,获得积分10
1分钟前
可乐发布了新的文献求助10
1分钟前
大个应助hu采纳,获得10
1分钟前
1分钟前
呜呜发布了新的文献求助30
1分钟前
Hello应助蛋堡采纳,获得10
1分钟前
麻花阳完成签到,获得积分10
1分钟前
1分钟前
蛋堡发布了新的文献求助10
1分钟前
1分钟前
呜呜完成签到,获得积分10
1分钟前
zzk001026发布了新的文献求助10
1分钟前
2分钟前
酷波er应助hu采纳,获得10
2分钟前
2分钟前
船长完成签到,获得积分10
2分钟前
诸葛不亮_1完成签到,获得积分10
2分钟前
徐志豪完成签到,获得积分20
2分钟前
徐志豪发布了新的文献求助10
2分钟前
赘婿应助烂漫的三德采纳,获得10
2分钟前
科研通AI6.1应助hu采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5822334
求助须知:如何正确求助?哪些是违规求助? 5981619
关于积分的说明 15558727
捐赠科研通 4943535
什么是DOI,文献DOI怎么找? 2662810
邀请新用户注册赠送积分活动 1608900
关于科研通互助平台的介绍 1563796