Coarse-to-Fine Image Aesthetics Assessment With Dynamic Attribute Selection

计算机科学 选择(遗传算法) 感知 二进制数 计算机视觉 过程(计算) 图像(数学) 人工智能 美学 审美体验 简单(哲学) 机制(生物学)
作者
Yipo Huang,Leida Li,Pengfei Chen,Jinjian Wu,Yuzhe Yang,Yaqian Li,Guangming Shi
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 9316-9329 被引量:19
标识
DOI:10.1109/tmm.2024.3389452
摘要

Image aesthetics assessment (IAA) is an interesting but challenging task, owing to the ineffable nature of human sense of beauty. The study of IAA has evolved from simple binary classification to more complex score regression and distribution prediction. It is effortless for people to perform aesthetic binary classification, i.e. , aesthetically pleasing or not. However, further judgment on the fine-level scalar aesthetic score is complex and typically determined by aesthetic attributes presented in the image, such as content, lighting and color. Motivated by the above facts, this paper presents a Coarse-to-fine image Aesthetics assessment model guided by Dynamic Attribute Selection, dubbed CADAS. The underlying idea is to simulate the process of human aesthetic perception by performing coarse-to-fine aesthetic reasoning. Specifically, a hierarchical AttributeNet is first pre-trained by imitating the staged mechanism of human aesthetic experience, producing the candidate aesthetic attributes. Then, an AestheticNet is introduced to perform the coarse-level binary classification, based on which a confidence-based attribute selection strategy is designed to dynamically pick out the dominant aesthetic attributes from the candidate ones. Finally, a self-attention-based FusionNet is designed to explore the interaction between dominant aesthetic attributes and aesthetic features, producing the fine-level aesthetic prediction. Extensive experiments demonstrate that the proposed model is superior to the state-of-the-arts. Furthermore, CADAS is also able to output the dominant aesthetic attributes in images, facilitating model explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助shinn采纳,获得10
刚刚
小七发布了新的文献求助10
刚刚
1秒前
1秒前
典雅刺猬完成签到,获得积分10
2秒前
哈哈哈完成签到 ,获得积分10
2秒前
zzuzll完成签到,获得积分10
2秒前
喂喂喂威完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
斯文静竹发布了新的文献求助10
4秒前
李庆发布了新的文献求助10
5秒前
6秒前
6秒前
光合谷发布了新的文献求助10
6秒前
HP完成签到,获得积分10
8秒前
岳小飞完成签到,获得积分20
8秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
Lucas应助dfsdgyu采纳,获得10
12秒前
13秒前
13秒前
Lucas应助ZZY采纳,获得10
14秒前
huangmubao发布了新的文献求助10
14秒前
w_za完成签到,获得积分10
15秒前
李哈哈发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
童0731完成签到,获得积分10
17秒前
19秒前
shinn发布了新的文献求助10
19秒前
fuwei完成签到,获得积分10
20秒前
20秒前
华仔应助啦啦啦采纳,获得30
21秒前
舒心的雍应助研友采纳,获得10
22秒前
xiaoguang发布了新的文献求助30
22秒前
jiwn完成签到,获得积分10
22秒前
活力菠萝发布了新的文献求助10
23秒前
斯文静竹完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826287
求助须知:如何正确求助?哪些是违规求助? 6014575
关于积分的说明 15569073
捐赠科研通 4946592
什么是DOI,文献DOI怎么找? 2664891
邀请新用户注册赠送积分活动 1610666
关于科研通互助平台的介绍 1565636