Recommender Systems in the Era of Large Language Models (LLMs)

计算机科学 推荐系统 数据科学 万维网 情报检索
作者
Zihuai Zhao,Wenqi Fan,Jiatong Li,Yunqing Liu,Xiaowei Mei,Yiqi Wang,Zhen Wen,Fei Wang,Xiangyu Zhao,Jiliang Tang,Qing Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 6889-6907 被引量:71
标识
DOI:10.1109/tkde.2024.3392335
摘要

With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an indispensable and important component in our daily lives, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have achieved significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating their textual side information, these DNN-based methods still exhibit some limitations, such as difficulties in effectively understanding users' interests and capturing textual side information, inabilities in generalizing to various seen/unseen recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the development of Large Language Models (LLMs), such as ChatGPT and GPT-4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization capabilities and reasoning skills. As a result, recent studies have actively attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, so as to provide researchers and practitioners in relevant fields with an in-depth understanding. Therefore, in this survey, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including pre-training, fine-tuning, and prompting paradigms. More specifically, we first introduce the representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we systematically review the emerging advanced techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss the promising future directions in this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
songge完成签到,获得积分10
6秒前
独孤完成签到 ,获得积分10
6秒前
敏er好学完成签到,获得积分10
8秒前
10秒前
小张完成签到 ,获得积分10
11秒前
xiemeili完成签到 ,获得积分10
11秒前
cdercder应助科研通管家采纳,获得10
15秒前
合适醉蝶完成签到 ,获得积分10
16秒前
Wang发布了新的文献求助10
17秒前
26秒前
无情的宛菡完成签到 ,获得积分10
27秒前
gangxiaxuan完成签到,获得积分10
32秒前
33秒前
Orange应助lauhoihung采纳,获得10
35秒前
发个15分的完成签到 ,获得积分10
35秒前
36秒前
36秒前
njseu完成签到 ,获得积分10
37秒前
行云流水完成签到,获得积分10
39秒前
虞无声完成签到,获得积分10
41秒前
Wangyingjie5发布了新的文献求助10
42秒前
Jayzie完成签到 ,获得积分10
43秒前
大椒完成签到 ,获得积分10
45秒前
我就想看看文献完成签到 ,获得积分10
46秒前
是是是WQ完成签到 ,获得积分0
47秒前
和谐雁荷完成签到 ,获得积分0
53秒前
zokor完成签到 ,获得积分10
53秒前
轩辕德地完成签到,获得积分10
1分钟前
杨宁完成签到 ,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
mzrrong完成签到 ,获得积分10
1分钟前
YJ完成签到,获得积分10
1分钟前
lauhoihung完成签到,获得积分10
1分钟前
舒适映寒完成签到,获得积分10
1分钟前
1分钟前
小白完成签到,获得积分10
1分钟前
点点完成签到 ,获得积分10
1分钟前
Clearly完成签到 ,获得积分10
1分钟前
唯雷完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301000
捐赠科研通 3057194
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626