清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Recommender Systems in the Era of Large Language Models (LLMs)

计算机科学 推荐系统 数据科学 万维网 情报检索
作者
Zihuai Zhao,Wenqi Fan,Jiatong Li,Yunqing Liu,Xiaowei Mei,Yiqi Wang,Zhen Wen,Fei Wang,Xiangyu Zhao,Jiliang Tang,Qing Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 6889-6907 被引量:208
标识
DOI:10.1109/tkde.2024.3392335
摘要

With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an indispensable and important component in our daily lives, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have achieved significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating their textual side information, these DNN-based methods still exhibit some limitations, such as difficulties in effectively understanding users' interests and capturing textual side information, inabilities in generalizing to various seen/unseen recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the development of Large Language Models (LLMs), such as ChatGPT and GPT-4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization capabilities and reasoning skills. As a result, recent studies have actively attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, so as to provide researchers and practitioners in relevant fields with an in-depth understanding. Therefore, in this survey, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including pre-training, fine-tuning, and prompting paradigms. More specifically, we first introduce the representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we systematically review the emerging advanced techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss the promising future directions in this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
霸气师完成签到 ,获得积分10
12秒前
29秒前
VDC发布了新的文献求助10
36秒前
贰壹完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
紫熊发布了新的文献求助10
1分钟前
xiw完成签到,获得积分10
1分钟前
潜行者完成签到 ,获得积分10
2分钟前
2分钟前
忞航完成签到 ,获得积分10
2分钟前
zoey发布了新的文献求助10
2分钟前
Ttimer完成签到,获得积分10
2分钟前
VDC发布了新的文献求助10
2分钟前
2223完成签到,获得积分10
2分钟前
科研通AI6.1应助zoey采纳,获得10
2分钟前
秦时明月完成签到,获得积分10
2分钟前
紫熊发布了新的文献求助10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
冰凌心恋完成签到,获得积分0
3分钟前
紫熊发布了新的文献求助10
3分钟前
3分钟前
紫熊发布了新的文献求助10
3分钟前
4分钟前
方白秋完成签到,获得积分0
4分钟前
积极香菜完成签到,获得积分10
4分钟前
精灵完成签到,获得积分10
4分钟前
科研通AI6.1应助积极香菜采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
4分钟前
紫熊发布了新的文献求助10
4分钟前
生命科学的第一推动力完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764535
求助须知:如何正确求助?哪些是违规求助? 5552284
关于积分的说明 15406276
捐赠科研通 4899648
什么是DOI,文献DOI怎么找? 2635872
邀请新用户注册赠送积分活动 1584041
关于科研通互助平台的介绍 1539208