A Human-Centered Learning and Teaching Framework Using Generative Artificial Intelligence for Self-Regulated Learning Development Through Domain Knowledge Learning in K–12 Settings

计算机科学 生成语法 人工智能 领域(数学分析) 教育技术 主动学习(机器学习) 人机交互 数学教育 心理学 数学 数学分析
作者
Siu Cheung Kong,Yin Yang
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1588-1599 被引量:50
标识
DOI:10.1109/tlt.2024.3392830
摘要

The advent of generative artificial intelligence (AI) has ignited an increase in discussions about generative AI tools in education. In this study, a human-centred learning and teaching framework (HCLTF) that uses generative AI tools for self-regulated learning development through domain knowledge learning was proposed to catalyse changes in educational practices. The framework illustrates how generative AI tools can revolutionise educational practices and transform the processes of teaching and learning to become human-centred. It emphasises the evolving roles of teachers, who increasingly become skilful facilitators and humanistic storytellers who craft differentiated instructions and attempt to develop students' individualised learning. Drawing upon insights from neuroscience, the framework guides students to employ generative AI tools to augment their attentiveness, stimulate active engagement in learning, receive immediate feedback, and encourage self-reflection. The pedagogical approach is also reimagined; teachers equipped with generative AI tools and AI literacy can refine their teaching strategies to better equip students to meet future challenges. The practical application of the framework is demonstrated in a case study involving the development of Chinese language writing ability among primary students within a K–12 educational context. This paper also reports the results of a 60-hour development programme for teachers. Specifically, providing in-service teachers with cases involving uses of the proposed framework helped them to better understand the generative AI concepts and integrate them into their teaching and learning and increased their perceived ability to design AI-integrated courses that would enhance students' attention, engagement, confidence, and satisfaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助自信以冬采纳,获得10
1秒前
1秒前
姜姜姜完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
4秒前
寒冷孤风发布了新的文献求助10
4秒前
杨xy发布了新的文献求助10
6秒前
7秒前
iNk应助瑶瑶采纳,获得20
8秒前
8秒前
还不错发布了新的文献求助10
9秒前
执着梦柏发布了新的文献求助10
10秒前
英勇的臻完成签到,获得积分10
10秒前
失眠紫真发布了新的文献求助10
10秒前
11秒前
14秒前
打打应助cc采纳,获得30
14秒前
科研通AI6应助黑苗采纳,获得10
14秒前
lumangxiaozi发布了新的文献求助10
14秒前
LFY完成签到 ,获得积分10
15秒前
科研通AI5应助还不错采纳,获得50
15秒前
FleeToMars完成签到 ,获得积分10
15秒前
微笑的千山完成签到,获得积分10
16秒前
16秒前
数字生命发布了新的文献求助10
17秒前
慕青应助失眠紫真采纳,获得10
17秒前
18秒前
数字生命完成签到,获得积分10
23秒前
salan完成签到,获得积分10
23秒前
小小月发布了新的文献求助10
24秒前
25秒前
Borges关注了科研通微信公众号
26秒前
小憨憨完成签到 ,获得积分10
28秒前
29秒前
apocalypse发布了新的文献求助30
30秒前
今后应助数字生命采纳,获得10
31秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
幼儿园活动设计 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4300218
求助须知:如何正确求助?哪些是违规求助? 3824985
关于积分的说明 11975263
捐赠科研通 3466312
什么是DOI,文献DOI怎么找? 1901176
邀请新用户注册赠送积分活动 948997
科研通“疑难数据库(出版商)”最低求助积分说明 851095