去模糊
计算机科学
计算机视觉
残余物
人工智能
核(代数)
事件(粒子物理)
水准点(测量)
图像复原
图像(数学)
核密度估计
帧(网络)
图像分辨率
图像处理
算法
数学
统计
物理
组合数学
估计员
电信
量子力学
地理
大地测量学
作者
Pei Wang,Jiumei He,Qingsen Yan,Yu Zhu,Jinqiu Sun,Yanning Zhang
标识
DOI:10.1109/icassp48485.2024.10446822
摘要
Traditional frame-based cameras inevitably suffer from non-uniform blur in real-world scenarios. Event cameras that record the intensity changes with high temporal resolution provide an effective solution for image deblurring. In this paper, we formulate the event-based image deblurring as an image generation problem by designing diffusion priors for the image and residual. Specifically, we propose an alternative diffusion sampling framework to jointly estimate clear and residual images to ensure the quality of the final result. In addition, to further enhance the subtle details, a pseudoinverse guidance module is leveraged to guide the prediction closer to the input with event data. Note that the proposed method can effectively handle the real unknown degradation without kernel estimation. The experiments on the benchmark event datasets demonstrate the effectiveness of our method.
科研通智能强力驱动
Strongly Powered by AbleSci AI