High-efficiency hydrogen detection for Sc decorated biphenylene based gas sensors: Insights from DFT study

联苯 材料科学 计算机科学 化学 复合材料 有机化学 亚苯基 聚合物
作者
C. Luo,Tong Chen,Lin Huang,Luzheng Xie,Danfeng Qin,Xianbo Xiao
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:65: 881-890 被引量:30
标识
DOI:10.1016/j.ijhydene.2024.04.061
摘要

Efficient and rapid detection of hydrogen during transport can effectively prevent gas leaks and explosions. Inspired by the successful synthesis of biphenylene network (BPN) monolayer, the electronic structure and sensing characteristics of nanodevices with metal Sc-decorated BPN monolayer for different concentrations of H2 are investigated by using density-functional theory in combination with the nonequilibrium Green's function approach theoretically and systematically. Calculated electron localization functions, charge transfers, energy band structures, projected densities of states, charge difference densities and adsorption energies revealed that the adsorption of H2 by metal Sc-modified BPN monolayer are all chemisorbed. Furthermore, compared to the original BPN transport device, the modification of Sc metal enhances electronic transport while preserving the anisotropy of the electron transport along the zigzag and armchair directions. The metallicity gradually enhanced with increasing concentration of Sc adsorbed by BPN. Interestingly, the BPN-Sc system exhibits a pronounced negative differential resistance (NDR) effect along the armchair direction, and it achieves switching ratios of 3.65 × 105 and 1.98 × 105 for its D-5H2 and D-1H2 devices. In addition, the maximum rectification ratio of the D-1H2 device in the armchair direction reaches ∼107 at low hydrogen concentration. Critically, the short recovery time (0.1 μs) demonstrates that the device can be reused when adsorbing individual H2. These results indicate the potential use of BPN with adsorbed Sc in the domain of gas sensitivity, especially for applications in detecting low concentration H2 leakage sensors, providing a theoretical basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HH完成签到,获得积分10
刚刚
小佟许的什么愿完成签到 ,获得积分10
刚刚
淡淡茉莉完成签到 ,获得积分10
刚刚
1秒前
lzcnextdoor发布了新的文献求助10
1秒前
哆啦梦完成签到,获得积分20
1秒前
二毛完成签到,获得积分10
2秒前
乐乐应助nyfz2002采纳,获得10
2秒前
自然妙旋完成签到,获得积分10
3秒前
slowride发布了新的文献求助10
4秒前
周运来完成签到,获得积分10
4秒前
慧慧子完成签到,获得积分10
5秒前
5秒前
feilei完成签到,获得积分10
5秒前
lzcnextdoor完成签到,获得积分10
6秒前
黑糖珍珠完成签到 ,获得积分10
7秒前
7秒前
8秒前
晓先森完成签到,获得积分10
8秒前
夏傥完成签到,获得积分10
8秒前
changaipei完成签到,获得积分10
10秒前
落后的听双完成签到 ,获得积分10
10秒前
水尽云生处完成签到,获得积分10
11秒前
江川锦鲤完成签到,获得积分10
11秒前
宇与鱼发布了新的文献求助10
11秒前
Accept应助AHR采纳,获得10
11秒前
靓丽行天完成签到,获得积分10
11秒前
学术乞丐感谢好心人完成签到,获得积分10
12秒前
神勇语堂完成签到 ,获得积分10
13秒前
Dreamer0422完成签到,获得积分10
13秒前
婉腾完成签到 ,获得积分10
14秒前
14秒前
细腻的书雁完成签到,获得积分10
14秒前
坦率书本完成签到,获得积分10
15秒前
ylf完成签到,获得积分10
16秒前
onw完成签到,获得积分10
16秒前
青蛙的第二滴口水完成签到,获得积分10
16秒前
成就的冰绿完成签到,获得积分10
17秒前
苻涵菡完成签到,获得积分10
17秒前
淡然宛凝完成签到 ,获得积分10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816035
求助须知:如何正确求助?哪些是违规求助? 3359486
关于积分的说明 10403177
捐赠科研通 3077391
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767759