A deep feature fusion and selection‐based retinal eye disease detection from OCT images

计算机科学 人工智能 特征选择 视网膜 光学相干层析成像 模式识别(心理学) 特征提取 计算机视觉 特征(语言学) 支持向量机 选择(遗传算法) 眼科 医学 语言学 哲学
作者
Muhammad Junaid Umer,Muhammad Sharif,Mudassar Raza,Seifedine Kadry
出处
期刊:Expert Systems [Wiley]
卷期号:40 (6) 被引量:12
标识
DOI:10.1111/exsy.13232
摘要

Abstract Optical coherence tomography (OCT) is one of the principal imaging modalities for retinal eye disease detection and classification. Different retinal eye diseases are the leading cause of blindness that can be overcome by early detection. However, ophthalmologists are currently carrying out retinal eye disease detection manually with the help of OCT images that may be erroneous and subjective. Different methods have been presented to automate the manual retinal eye disease detection process that needs further improvement in detection accuracy. This research proposed an automatic method for retinal eye disease detection and classification from OCT images using fusion and selection techniques. First, the modified‐Alexnet and ResNet‐50 are utilized for deep feature vector extraction. In the next step, these vectors are fused serially and rectified by the proposed feature selection framework and passed as input to different machine learning classifiers for retinal disease diagnosis. For this purpose, a publicly available dataset of retinal eye diseases with four classes is utilized. The proposed retinal eye disease detection method achieved an overall average accuracy index of greater than 99.95%, higher than the top one in the literature, that is, 99.39%. Experimental results authenticated that the proposed retinal eye disease detection methodology can reliably be used for automatic eye disease detection from OCT images. Furthermore, the proposed deep feature and selection‐based retinal eye disease detection methodology achieved state‐of‐the‐art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
婷123发布了新的文献求助10
4秒前
krislan完成签到,获得积分10
5秒前
Peter_Zhu发布了新的文献求助10
7秒前
7秒前
碧蓝平露发布了新的文献求助10
8秒前
8秒前
高高白曼舞完成签到,获得积分10
9秒前
FashionBoy应助zl采纳,获得10
10秒前
江湖夜雨十年灯完成签到,获得积分10
10秒前
11秒前
虾仁不眨眼完成签到,获得积分10
13秒前
15秒前
李健应助科研通管家采纳,获得20
16秒前
今后应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
Peter_Zhu完成签到,获得积分10
16秒前
Verity完成签到,获得积分0
16秒前
liuchzzyy发布了新的文献求助10
18秒前
碧蓝平露完成签到,获得积分20
19秒前
20秒前
ding应助等待的谷波采纳,获得10
23秒前
酷不哭哭完成签到,获得积分10
24秒前
25秒前
26秒前
彭于晏应助wjy采纳,获得10
26秒前
PhD完成签到,获得积分10
29秒前
30秒前
wangyan发布了新的文献求助30
31秒前
暗夜星辰完成签到,获得积分0
31秒前
清脆的天空完成签到,获得积分10
32秒前
32秒前
zm完成签到,获得积分10
32秒前
tp完成签到,获得积分20
32秒前
34秒前
传奇3应助碧蓝平露采纳,获得10
34秒前
tp发布了新的文献求助10
35秒前
科研通AI2S应助LUNE采纳,获得30
35秒前
拼搏的飞薇完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872909
求助须知:如何正确求助?哪些是违规求助? 6493392
关于积分的说明 15670147
捐赠科研通 4990296
什么是DOI,文献DOI怎么找? 2690194
邀请新用户注册赠送积分活动 1632729
关于科研通互助平台的介绍 1590605