A deep feature fusion and selection‐based retinal eye disease detection from OCT images

计算机科学 人工智能 特征选择 视网膜 光学相干层析成像 模式识别(心理学) 特征提取 计算机视觉 特征(语言学) 支持向量机 选择(遗传算法) 眼科 医学 语言学 哲学
作者
Muhammad Junaid Umer,Muhammad Sharif,Mudassar Raza,Seifedine Kadry
出处
期刊:Expert Systems [Wiley]
卷期号:40 (6) 被引量:12
标识
DOI:10.1111/exsy.13232
摘要

Abstract Optical coherence tomography (OCT) is one of the principal imaging modalities for retinal eye disease detection and classification. Different retinal eye diseases are the leading cause of blindness that can be overcome by early detection. However, ophthalmologists are currently carrying out retinal eye disease detection manually with the help of OCT images that may be erroneous and subjective. Different methods have been presented to automate the manual retinal eye disease detection process that needs further improvement in detection accuracy. This research proposed an automatic method for retinal eye disease detection and classification from OCT images using fusion and selection techniques. First, the modified‐Alexnet and ResNet‐50 are utilized for deep feature vector extraction. In the next step, these vectors are fused serially and rectified by the proposed feature selection framework and passed as input to different machine learning classifiers for retinal disease diagnosis. For this purpose, a publicly available dataset of retinal eye diseases with four classes is utilized. The proposed retinal eye disease detection method achieved an overall average accuracy index of greater than 99.95%, higher than the top one in the literature, that is, 99.39%. Experimental results authenticated that the proposed retinal eye disease detection methodology can reliably be used for automatic eye disease detection from OCT images. Furthermore, the proposed deep feature and selection‐based retinal eye disease detection methodology achieved state‐of‐the‐art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的小刺猬完成签到,获得积分10
刚刚
1秒前
1秒前
fy完成签到,获得积分10
1秒前
nuoyefenfei完成签到,获得积分10
2秒前
2秒前
2秒前
dahuihui完成签到,获得积分20
2秒前
会神发布了新的文献求助10
2秒前
iNk应助骑着蜗牛追火箭采纳,获得10
3秒前
甜甜的静柏完成签到 ,获得积分10
3秒前
yeast发布了新的文献求助10
3秒前
wang发布了新的文献求助10
3秒前
runtang发布了新的文献求助10
3秒前
JL发布了新的文献求助30
3秒前
3秒前
MOON发布了新的文献求助10
3秒前
4秒前
JoeyCory完成签到,获得积分10
4秒前
小王同学发布了新的文献求助10
4秒前
彭于晏应助猪猪hero采纳,获得10
5秒前
HJJHJH发布了新的文献求助10
5秒前
5秒前
dahuihui发布了新的文献求助30
6秒前
伯赏雁蓉发布了新的文献求助10
6秒前
6秒前
杨毛袜完成签到,获得积分10
6秒前
hony完成签到,获得积分10
7秒前
Gaojin锦完成签到,获得积分10
7秒前
我是老大应助迟迟采纳,获得10
7秒前
7秒前
李健应助MLi采纳,获得10
8秒前
雪白雪旋发布了新的文献求助10
8秒前
杨大大发布了新的文献求助10
8秒前
牛牛完成签到,获得积分10
8秒前
电麻木完成签到,获得积分10
8秒前
8秒前
冷傲熊猫发布了新的文献求助10
9秒前
9秒前
科研通AI5应助千帆采纳,获得10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806134
求助须知:如何正确求助?哪些是违规求助? 3350986
关于积分的说明 10352268
捐赠科研通 3066831
什么是DOI,文献DOI怎么找? 1684153
邀请新用户注册赠送积分活动 809346
科研通“疑难数据库(出版商)”最低求助积分说明 765463