吸引子
不变测度
不变(物理)
数学
独特性
随机动力系统
动力系统理论
数学分析
极限(数学)
限制
应用数学
线性动力系统
数学物理
遍历理论
线性系统
物理
机械工程
量子力学
工程类
作者
Zhang Chen,Wei Lin,Dandan Yang,Xiao-Dong Zuo
标识
DOI:10.3934/dcdss.2023002
摘要
In this article, we investigate the dynamics of three-dimensional, non-autonomous, and globally modified Navier-Stokes equations with time-dependent delay and additive noise. Based on the well-posedness of solutions, we demonstrate that the solution operators of such equations generate a non-autonomous random dynamical system. We further prove the existence and uniqueness of random attractors as well as the periodicity and the upper semicontinuity for this random dynamical system. We also prove the existence of invariant measures supported on the random attractors. Moreover, we rigorously find that every limit of a sequence of invariant measures must be an invariant measure of the corresponding limiting equations as the noise intensity $ \varepsilon\rightarrow0 $ or the modification parameter $ N\rightarrow N_0\in (0, +\infty) $.
科研通智能强力驱动
Strongly Powered by AbleSci AI