Proposing a Clinical Model for RBE Based on Proton Track-End Counts

线性能量转移 相对生物效应 质子疗法 质子 磁道(磁盘驱动器) 蒙特卡罗方法 体素 核医学 医学 医学物理学 计算物理学 统计 核物理学 物理 人工智能 辐照 计算机科学 数学 操作系统
作者
Nicholas T. Henthorn,Lydia L Gardner,A. Aitkenhead,Benjamin C. Rowland,Jungwook Shin,Edward Smith,Michael J. Merchant,R. Mackay,K.J. Kirkby,Pankaj Chaudhary,Kevin M. Prise,Stephen J. McMahon,Tracy Underwood
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:116 (4): 916-926 被引量:6
标识
DOI:10.1016/j.ijrobp.2022.12.056
摘要

Purpose In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. Methods and Materials We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. Results Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. Conclusions These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties. In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
SY关注了科研通微信公众号
3秒前
Chong完成签到,获得积分10
3秒前
6秒前
7秒前
阿喵发布了新的文献求助10
7秒前
仙女完成签到 ,获得积分10
9秒前
105完成签到 ,获得积分10
12秒前
wanci应助惊蛰采纳,获得10
17秒前
sll完成签到 ,获得积分10
22秒前
22秒前
23秒前
maclogos完成签到,获得积分10
26秒前
开朗醉波完成签到,获得积分10
27秒前
Zetlynn完成签到,获得积分10
27秒前
super发布了新的文献求助10
28秒前
重要的炳完成签到 ,获得积分10
29秒前
gnr2000完成签到,获得积分10
30秒前
然然然完成签到 ,获得积分10
32秒前
敏er好学完成签到,获得积分10
36秒前
皮卡龙完成签到 ,获得积分10
37秒前
庄海棠完成签到 ,获得积分10
37秒前
Kai完成签到 ,获得积分10
41秒前
shawn完成签到 ,获得积分10
41秒前
lhn完成签到 ,获得积分10
42秒前
木卫二完成签到 ,获得积分10
44秒前
WEN完成签到,获得积分10
45秒前
Kelly完成签到,获得积分10
46秒前
47秒前
1122完成签到 ,获得积分10
48秒前
50秒前
量子星尘发布了新的文献求助10
54秒前
1分钟前
惊蛰完成签到 ,获得积分10
1分钟前
1分钟前
chenqingyu完成签到,获得积分10
1分钟前
ybheart完成签到,获得积分0
1分钟前
刘雨森完成签到 ,获得积分10
1分钟前
HarryYang完成签到 ,获得积分10
1分钟前
落霞与孤鹜齐飞完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4881060
求助须知:如何正确求助?哪些是违规求助? 4167312
关于积分的说明 12927841
捐赠科研通 3926541
什么是DOI,文献DOI怎么找? 2155163
邀请新用户注册赠送积分活动 1173422
关于科研通互助平台的介绍 1078120