Differential co-expression network analysis with DCoNA reveals isomiR targeting aberrations in prostate cancer

前列腺癌 小RNA 计算生物学 DNA微阵列 生物 鉴别诊断 癌症 肿瘤科 基因表达 病理 医学 遗传学 基因
作者
Anton Zhiyanov,Narek Engibaryan,Stepan Nersisyan,Maxim Shkurnikov,Alexander Tonevitsky
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btad051
摘要

One of the standard methods of high-throughput RNA sequencing analysis is differential expression. However, it does not detect changes in molecular regulation. In contrast to the standard differential expression analysis, differential co-expression one aims to detect pairs or clusters whose mutual expression changes between two conditions.We developed DCoNA (Differential Co-expression Network Analysis) - an open-source statistical tool that allows one to identify pair interactions, which correlation significantly changes between two conditions. Comparing DCoNA with the state-of-the-art analog, we showed that DCoNA is a faster, more accurate, and less memory-consuming tool. We applied DCoNA to prostate mRNA/miRNA-seq data collected from The Cancer Genome Atlas (TCGA) and compared predicted regulatory interactions of miRNA isoforms (isomiRs) and their target mRNAs between normal and cancer samples. As a result, almost all highly expressed isomiRs lost negative correlation with their targets in prostate cancer samples compared to ones without the pathology. One exception to this trend was the canonical isomiR of hsa-miR-93-5p acquiring cancer-specific targets. Further analysis showed that cancer aggressiveness simultaneously increased with the expression level of this isomiR in both TCGA primary tumor samples and 153 blood plasma samples of P. Hertsen Moscow Oncology Research Institute patients' cohort analyzed by miRNA microarrays.Source code and documentation of DCoNA are available at https://github.com/zhiyanov/DCoNA.Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小白完成签到 ,获得积分10
2秒前
wang发布了新的文献求助10
2秒前
bkagyin应助薛定谔的猫采纳,获得10
3秒前
Jasper应助刻苦傲安采纳,获得10
3秒前
3秒前
谦让的莆完成签到 ,获得积分10
4秒前
A1B2C3D4E5F6发布了新的文献求助10
6秒前
7秒前
wang完成签到,获得积分10
8秒前
9秒前
大渣饼完成签到 ,获得积分10
11秒前
12秒前
13秒前
Ash发布了新的文献求助10
13秒前
夏夏是只猫完成签到,获得积分10
13秒前
unix完成签到,获得积分10
13秒前
15秒前
林林完成签到 ,获得积分10
15秒前
16秒前
哆哆发布了新的文献求助10
18秒前
22秒前
刻苦傲安发布了新的文献求助10
22秒前
Jiny完成签到,获得积分10
23秒前
HDrinnk完成签到,获得积分10
26秒前
26秒前
27秒前
科研通AI6.1应助哆哆采纳,获得10
27秒前
California完成签到 ,获得积分10
27秒前
酷波er应助顶天立地采纳,获得10
28秒前
29秒前
小富婆发布了新的文献求助10
32秒前
33秒前
小马完成签到,获得积分10
33秒前
薛定谔的猫完成签到,获得积分10
35秒前
Atoxus发布了新的文献求助10
37秒前
byd发布了新的文献求助10
39秒前
星辰大海应助大力的图图采纳,获得30
39秒前
shelley完成签到,获得积分10
40秒前
希望天下0贩的0应助董雪采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5841775
求助须知:如何正确求助?哪些是违规求助? 6166428
关于积分的说明 15607934
捐赠科研通 4959015
什么是DOI,文献DOI怎么找? 2673584
邀请新用户注册赠送积分活动 1618487
关于科研通互助平台的介绍 1573557