皮质脊髓束
锥体束
神经科学
内囊
初级运动皮层
解剖
运动皮层
脊髓
体感系统
脑梗
皮质(解剖学)
生物
心理学
医学
磁共振成像
白质
刺激
磁共振弥散成像
放射科
作者
Roger Lemon,Robert J. Morecraft
出处
期刊:Brain
[Oxford University Press]
日期:2022-12-28
卷期号:146 (5): 1791-1803
被引量:1
标识
DOI:10.1093/brain/awac496
摘要
We review the spatial organization of corticospinal outputs from different cortical areas and how this reflects the varied functions mediated by the corticospinal tract. A long-standing question is whether the primate corticospinal tract shows somatotopical organization. Although this has been clearly demonstrated for corticofugal outputs passing through the internal capsule and cerebral peduncle, there is accumulating evidence against somatotopy in the pyramidal tract in the lower brainstem and in the spinal course of the corticospinal tract. Answering the question on somatotopy has important consequences for understanding the effects of incomplete spinal cord injury. Our recent study in the macaque monkey, using high-resolution dextran tracers, demonstrated a great deal of intermingling of fibres originating from primary motor cortex arm/hand, shoulder and leg areas. We quantified the distribution of fibres belonging to these different projections and found no significant difference in their distribution across different subsectors of the pyramidal tract or lateral corticospinal tract, arguing against somatotopy. We further demonstrated intermingling with corticospinal outputs derived from premotor and supplementary motor arm areas. We present new evidence against somatotopy for corticospinal projections from rostral and caudal cingulate motor areas and from somatosensory areas of the parietal cortex. In the pyramidal tract and lateral corticospinal tract, fibres from the cingulate motor areas overlap with each other. Fibres from the primary somatosensory cortex arm area completely overlap those from the leg area. There is also substantial overlap of both these outputs with those from posterior parietal sensorimotor areas. We argue that the extensive intermingling of corticospinal outputs from so many different cortical regions must represent an organizational principle, closely related to its mediation of many different functions and its large range of fibre diameters. The motor sequelae of incomplete spinal injury, such as central cord syndrome and 'cruciate paralysis', include much greater deficits in upper than in lower limb movement. Current teaching and text book explanations of these symptoms are still based on a supposed corticospinal somatotopy or 'lamination', with greater vulnerability of arm and hand versus leg fibres. We suggest that such explanations should now be finally abandoned. Instead, the clinical and neurobiological implications of the complex organization of the corticospinal tract need now to be taken into consideration. This leads us to consider the evidence for a greater relative influence of the corticospinal tract on upper versus lower limb movements, the former best characterized by skilled hand and digit movements.
科研通智能强力驱动
Strongly Powered by AbleSci AI