Privacy-Preserving TPE-Based JPEG Image Retrieval in Cloud-Assisted Internet of Things

计算机科学 物联网 JPEG格式 计算机安全 云计算 互联网 信息隐私 计算机视觉 万维网 图像(数学) 操作系统
作者
Yakun Ma,Xiuli Chai,Zhihua Gan,Yushu Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4842-4856 被引量:18
标识
DOI:10.1109/jiot.2023.3301042
摘要

With the large-scale deployment of the Internet of Things (IoT), lots of images are generated and outsourced to the cloud to alleviate storage burdens. Encrypted image retrieval has been widely studied as a promising technique for balancing privacy and usability. However, existing schemes have primarily focused on retrieval usability but neglected visual usability, resulting in limitations in image management, even in scenarios where preserved visual information poses no hazard to privacy. In this article, we are thus inspired to propose a privacy-preserving JPEG image retrieval scheme that effectively enhances retrieval efficiency and accuracy while ensuring low-file expansion and excellent thumbnail-preserving accuracy for ciphertext images. Specifically, the well-designed thumbnail-preserving encryption (TPE) enables accurate thumbnail-preserving and high-quality decryption of encrypted images by integrating Huffman coding and information embedding techniques. Moreover, the proposed TPE method fully considers JPEG compression to decrease the ciphertext file expansion and gain good format compatibility. Additionally, adaptive encryption key generation is designed to minimize key storage and considerably bolster security. Also, the cloud can generate preview thumbnails for uploaded TPE-encrypted images, and then extract the Hue-saturation-value (HSV) and uniform local binary pattern (ULBP) features from thumbnails instead of encrypted images to boost retrieval efficiency and accuracy. Experimental results show that the peak signal-to-noise ratio (PSNR) of thumbnail-preserving accuracy and decrypted image quality reaches 52 dB and 61 dB, respectively, the file expansion is minimally limited to 6%, and the mean average precision (mAP) of retrieval attains 64%, indicating that our scheme significantly outperforms the state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbmdxm完成签到,获得积分20
1秒前
认真的白开水完成签到,获得积分10
1秒前
我是老大应助Wonder采纳,获得10
1秒前
silong发布了新的文献求助10
2秒前
JamesPei应助czx采纳,获得10
2秒前
FashionBoy应助ncp采纳,获得10
2秒前
3秒前
LX发布了新的文献求助10
3秒前
解冰珍发布了新的文献求助10
3秒前
枫糖完成签到,获得积分10
3秒前
jinni发布了新的文献求助10
4秒前
5秒前
鲤鱼发布了新的文献求助10
6秒前
领导范儿应助llllda采纳,获得10
6秒前
王健完成签到,获得积分10
6秒前
6秒前
7秒前
依妍发布了新的文献求助10
8秒前
科研通AI5应助suibiao采纳,获得30
9秒前
9秒前
英俊的铭应助北北采纳,获得10
9秒前
money完成签到 ,获得积分10
10秒前
10秒前
等待冬亦应助Shilly采纳,获得20
10秒前
11秒前
SciGPT应助闪闪的屁股采纳,获得10
11秒前
zyn完成签到,获得积分10
11秒前
卡卡发布了新的文献求助10
11秒前
ddd完成签到,获得积分10
12秒前
Akim应助爱吃牛小排采纳,获得10
12秒前
搜集达人应助王健采纳,获得10
13秒前
科研通AI5应助依妍采纳,获得50
13秒前
13秒前
13秒前
czx发布了新的文献求助10
14秒前
14秒前
14秒前
虚心丹秋发布了新的文献求助10
14秒前
zhHan完成签到,获得积分10
15秒前
汉堡包应助LRRAM_809采纳,获得10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836627
求助须知:如何正确求助?哪些是违规求助? 3378913
关于积分的说明 10506658
捐赠科研通 3098652
什么是DOI,文献DOI怎么找? 1706589
邀请新用户注册赠送积分活动 821108
科研通“疑难数据库(出版商)”最低求助积分说明 772431