阳极
磁强计
材料科学
钠
降级(电信)
原位
离子
电极
电池(电)
动力学
电化学
钠离子电池
化学工程
光电子学
纳米技术
化学
计算机科学
磁场
物理
物理化学
冶金
热力学
电信
功率(物理)
有机化学
量子力学
工程类
法拉第效率
作者
Daping Qiu,Ang Gao,Wanting Zhao,Zhaoli Sun,Biao Zhang,Junjie Xu,Tong Shen,Jingjing Wang,Zhi Fang,Yanglong Hou
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-09-08
卷期号:8 (10): 4052-4060
被引量:20
标识
DOI:10.1021/acsenergylett.3c01086
摘要
Transition-metal chalcogenides (TMCs) are recognized as promising sodium-ion battery anodes for their high theoretical specific capacity and low sodium metal plating risk. Nevertheless, their unsatisfactory rate capability along with unstable cyclability are bottlenecks to their implementation, especially for fast-charging applications. Herein, we report two-dimensional FeSe nanosheets (FeSe-NS) and monitor the fast-charging degradation mechanism of FeSe-NS with in situ magnetometry as the central role. Specifically, first, combining in situ XRD and in situ magnetometry with theoretical calculations, we reshape the sodium storage mechanism of FeSe-NS, namely, the "insertion–conversion–space charge" sodium storage mechanism. Then, with the aid of in situ magnetometry and ex situ characterizations, we reveal that the sluggish kinetics and inferior reversibility of the conversion reaction (Fe2+ ↔ Fe0) in the medium-voltage region are barriers to the fast-charging performance of FeSe-NS. Therefore, we propose that enhancing the kinetics and reversibility of the conversion reaction is the key point for constructing a fast-charging TMC anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI