Deep learning based adaptive deformation of aerodynamic shape for ducted propellers

空气动力学 螺旋桨 导管(解剖学) 前沿 工程类 替代模型 人工智能 计算机科学 控制理论(社会学) 海洋工程 航空航天工程 机器学习 控制(管理) 医学 病理
作者
Liu Liu,Tianqi Wang,Zeming Gao,Lifang Zeng,Xueming Shao
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:142: 108607-108607 被引量:8
标识
DOI:10.1016/j.ast.2023.108607
摘要

Ducted propellers are widely used in eVTOL. The leading edge shape of the duct plays an important role in the aerodynamic performance of the ducted propeller. In this work, an optimization framework based on deep learning and multi-island genetic algorithm is proposed, which can quickly obtain the optimal leading edge shape according to the current working condition. Firstly, a modified shape parameterization method realizes the accurate description of the duct profile, especially for the control of leading edge shape. Secondly, a surrogate model based on deep learning and numerical simulated dataset is established to quickly predict the aerodynamic performance of ducted propellers, which is used in the optimization framework. Finally, optimization tasks for hovering state and forward flights at different advance ratios are carried out and analyzed. The results show that the deep learning based surrogate model has high precision and efficiency. Compared with the original design, the performance of the ducted propeller with optimized leading edge shape is increased by 17.6% in hovering state, and by 13.2%, 16.7%, 16.2% at three forward flight states respectively. The proposed optimization framework will pave the way for the application of adaptive deformation technology on ducted propellers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
库库写论文完成签到,获得积分10
刚刚
Toby发布了新的文献求助10
刚刚
syh完成签到,获得积分10
刚刚
orixero应助科研通管家采纳,获得10
1秒前
LaTeXer应助科研通管家采纳,获得200
1秒前
W-水完成签到,获得积分10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
CucRuotThua应助科研通管家采纳,获得10
1秒前
xdedd完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
Hssssss应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
777发布了新的文献求助20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
Ally发布了新的文献求助10
2秒前
香蕉觅云应助o30采纳,获得10
3秒前
量子星尘发布了新的文献求助50
3秒前
3秒前
Emily发布了新的文献求助10
3秒前
3秒前
3秒前
111发布了新的文献求助10
4秒前
慕青应助风清扬采纳,获得10
4秒前
120hgp完成签到,获得积分10
4秒前
chenxi完成签到,获得积分20
4秒前
邱紫君发布了新的文献求助10
5秒前
5秒前
5秒前
清音完成签到,获得积分10
5秒前
失眠雨发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082008
求助须知:如何正确求助?哪些是违规求助? 4299523
关于积分的说明 13395840
捐赠科研通 4123323
什么是DOI,文献DOI怎么找? 2258267
邀请新用户注册赠送积分活动 1262566
关于科研通互助平台的介绍 1196568