亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed deep learning for structural vibration identification and its application on a benchmark structure

计算机科学 结构健康监测 人工智能 深度学习 水准点(测量) 自编码 振动 卷积神经网络 脉冲响应 鉴定(生物学) 机器学习 工程类 物理 数学 结构工程 大地测量学 数学分析 植物 生物 地理 量子力学
作者
Minte Zhang,Tong Guo,Guodong Zhang,Zhongxiang Liu,Weijie Xu
出处
期刊:Philosophical Transactions of the Royal Society A [Royal Society]
卷期号:382 (2264) 被引量:11
标识
DOI:10.1098/rsta.2022.0400
摘要

Structural vibration identification is an important task in civil engineering that is based on processing measured data from structural monitoring. However, predicting the response at unsensed locations based on limited sensor data can be challenging. Deep learning (DL) methods have shown promise in vibration data feature extraction and generation, but they struggle to capture the underlying physics laws and dynamic equations that govern vibration identification. This paper presents a novel framework called physics-informed deep learning (PIDL) that combines deep generative networks with structural dynamics knowledge to address these challenges. The PIDL framework consists of a data-driven convolutional neural network for structural excitation identification and a physics-informed variational autoencoder for explicit time-domain (ETD) vibration analysis with the generated unit impulse response (UIR) signal of the measured structure. The proposed framework is evaluated on a benchmark structure for structural health monitoring, demonstrating its effectiveness in extracting physics-related dynamics features and accurately identifying excitation signals and latent physics parameters across different damage patterns. Additionally, the incorporation of an ETD method-aided convolution function in the loss function aligns the generated UIR signals with the dynamic properties of the measured structure. Compared with conventional DL-based vibration analysis methods, the PIDL framework offers improved accuracy and reliability by integrating structural dynamics knowledge. This study contributes to the advancement of structural vibration identification and showcases the potential of the PIDL framework in civil structure monitoring applications. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 2)'.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
平常的乘云完成签到,获得积分10
4秒前
9秒前
33秒前
搜集达人应助mengzhe采纳,获得10
43秒前
51秒前
51秒前
54秒前
mengzhe发布了新的文献求助10
55秒前
Yvonnne关注了科研通微信公众号
57秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
mengzhe完成签到,获得积分10
1分钟前
柯语雪完成签到,获得积分10
1分钟前
酷酷的八宝粥完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
牛八先生完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
3分钟前
satsuki发布了新的文献求助10
3分钟前
善学以致用应助satsuki采纳,获得10
3分钟前
3分钟前
3分钟前
梦想在路上完成签到,获得积分10
3分钟前
Hayat发布了新的文献求助30
3分钟前
江山木发布了新的文献求助10
4分钟前
4分钟前
顾矜应助张智采纳,获得10
4分钟前
江山木发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077997
求助须知:如何正确求助?哪些是违规求助? 4296923
关于积分的说明 13387571
捐赠科研通 4119458
什么是DOI,文献DOI怎么找? 2256007
邀请新用户注册赠送积分活动 1260335
关于科研通互助平台的介绍 1193757