已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Closed-Loop Transfer Enables AI to Yield Chemical Knowledge

接口 化学空间 模块化设计 人工智能 计算机科学 产量(工程) 集合(抽象数据类型) 机器学习 生化工程 物理 工程类 生物 药物发现 生物信息学 热力学 计算机硬件 程序设计语言 操作系统
作者
Nicholas H. Angello,David M. Friday,Changhyun Hwang,Seungjoo Yi,Austin Cheng,Tiara Torres-Flores,Edward R. Jira,Wesley Wang,Alán Aspuru‐Guzik,Martin D. Burke,Charles M. Schroeder,Ying Diao,Nicholas E. Jackson
标识
DOI:10.26434/chemrxiv-2023-jqbqt
摘要

AI-guided closed-loop experimentation has recently emerged as a promising method to optimize objective functions,1,2 but the substantial potential of this traditionally black-box approach to reveal new scientific knowledge has remained largely untapped. Here, we report a new AI-guided approach, dubbed Closed-Loop Transfer (CLT), that integrates closed-loop experiments with physics-based feature selection and supervised learning to yield new scientific knowledge in parallel with optimization of objective functions. CLT surprisingly revealed that high-energy regions of the triplet state manifold are paramount in dictating molecular photostability in solution across a diverse chemical library of light-harvesting donor-bridge-acceptor oligomers. Remarkably, this insight emerged after automated modular synthesis and experimental characterization of only ~1.5% of the theoretical chemical space. Supervised learning models considering millions of combinations of 100+ physics-based descriptors further showed that high energy triplet states most strongly correlate with photostability, while excluding more commonly considered predictors such as the lowest energy triplet state. The physics-informed model for photostability was even further confirmed and then strengthened using an explicit experimental test set, validating the substantial power of the CLT method. Broadly, these findings show that interfacing physics-based modeling with closed-loop discovery campaigns unimpeded by synthesis bottlenecks can rapidly illuminate fundamental chemical insights and guide more rational pursuit of frontier molecular functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助zumii采纳,获得10
2秒前
2秒前
自然奇异猪猪完成签到,获得积分10
4秒前
科研通AI5应助傢誠采纳,获得10
4秒前
4秒前
5秒前
6秒前
orixero应助不要加糖采纳,获得10
6秒前
顾矜应助Unicorn采纳,获得10
6秒前
Jowill发布了新的文献求助10
7秒前
调皮觅荷完成签到,获得积分10
8秒前
黄2发布了新的文献求助10
9秒前
10秒前
调皮觅荷发布了新的文献求助10
11秒前
还能不能学会了完成签到,获得积分10
11秒前
小羊zhou发布了新的文献求助10
12秒前
杰米阳完成签到,获得积分20
12秒前
ahan发布了新的文献求助10
13秒前
豆豆发布了新的文献求助10
13秒前
傢誠发布了新的文献求助10
14秒前
17秒前
12完成签到 ,获得积分10
19秒前
ahan完成签到,获得积分10
20秒前
21秒前
杰米阳发布了新的文献求助10
23秒前
温柔的翼发布了新的文献求助10
24秒前
朴素海亦完成签到 ,获得积分10
24秒前
25秒前
司空天德发布了新的文献求助10
27秒前
28秒前
小老板完成签到,获得积分10
28秒前
28秒前
FashionBoy应助dowhenin采纳,获得10
29秒前
29秒前
32秒前
zkf发布了新的文献求助10
32秒前
多情的续完成签到,获得积分10
34秒前
仙笛童神发布了新的文献求助10
34秒前
研友_VZG7GZ应助vvvvvvld采纳,获得10
34秒前
尊敬秋双完成签到 ,获得积分10
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811450
求助须知:如何正确求助?哪些是违规求助? 3355735
关于积分的说明 10377501
捐赠科研通 3072571
什么是DOI,文献DOI怎么找? 1687653
邀请新用户注册赠送积分活动 811715
科研通“疑难数据库(出版商)”最低求助积分说明 766795