DiMix: Disentangle-and-Mix Based Domain Generalizable Medical Image Segmentation

计算机科学 概化理论 人工智能 一般化 机器学习 领域(数学分析) 深度学习 分割 数学分析 统计 数学
作者
Hyeongyu Kim,Yejee Shin,Dosik Hwang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 242-251 被引量:5
标识
DOI:10.1007/978-3-031-43898-1_24
摘要

The rapid advancements in deep learning have revolutionized multiple domains, yet the significant challenge lies in effectively applying this technology to novel and unfamiliar environments, particularly in specialized and costly fields like medicine. Recent deep learning research has therefore focused on domain generalization, aiming to train models that can perform well on datasets from unseen environments. This paper introduces a novel framework that enhances generalizability by leveraging transformer-based disentanglement learning and style mixing. Our framework identifies features that are invariant across different domains. Through a combination of content-style disentanglement and image synthesis, the proposed method effectively learns to distinguish domain-agnostic features, resulting in improved performance when applied to unseen target domains. To validate the effectiveness of the framework, experiments were conducted on a publicly available Fundus dataset, and comparative analyses were performed against other existing approaches. The results demonstrated the power and efficacy of the proposed framework, showcasing its ability to enhance domain generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jackieshark发布了新的文献求助10
刚刚
奋斗一刀发布了新的文献求助10
刚刚
JamesPei应助sober采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
wangxuejiao发布了新的文献求助10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得80
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
1秒前
似不是发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得80
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
绕越关注了科研通微信公众号
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得30
1秒前
浮游应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654890
求助须知:如何正确求助?哪些是违规求助? 4796024
关于积分的说明 15070892
捐赠科研通 4813441
什么是DOI,文献DOI怎么找? 2575189
邀请新用户注册赠送积分活动 1530594
关于科研通互助平台的介绍 1489212