Two-Stage Edge-Side Fault Diagnosis Method Based on Double Knowledge Distillation

计算机科学 聚类分析 断层(地质) 加权 故障覆盖率 数据挖掘 陷入故障 GSM演进的增强数据速率 蒸馏 故障检测与隔离 人工智能 工程类 医学 化学 电气工程 有机化学 地震学 电子线路 执行机构 放射科 地质学
作者
Yang Yang,Yuhan Long,Yijing Lin,Zhipeng Gao,Lanlan Rui,Peng Yu
出处
期刊:Computers, materials & continua 卷期号:76 (3): 3623-3651
标识
DOI:10.32604/cmc.2023.040250
摘要

With the rapid development of the Internet of Things (IoT), the automation of edge-side equipment has emerged as a significant trend. The existing fault diagnosis methods have the characteristics of heavy computing and storage load, and most of them have computational redundancy, which is not suitable for deployment on edge devices with limited resources and capabilities. This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation. First, we offer a clustering-based self-knowledge distillation approach (Cluster KD), which takes the mean value of the sample diagnosis results, clusters them, and takes the clustering results as the terms of the loss function. It utilizes the correlations between faults of the same type to improve the accuracy of the teacher model, especially for fault categories with high similarity. Then, the double knowledge distillation framework uses ordinary knowledge distillation to build a lightweight model for edge-side deployment. We propose a two-stage edge-side fault diagnosis method (TSM) that separates fault detection and fault diagnosis into different stages: in the first stage, a fault detection model based on a denoising auto-encoder (DAE) is adopted to achieve fast fault responses; in the second stage, a diverse convolution model with variance weighting (DCMVW) is used to diagnose faults in detail, extracting features from micro and macro perspectives. Through comparison experiments conducted on two fault datasets, it is proven that the proposed method has high accuracy, low delays, and small computation, which is suitable for intelligent edge-side fault diagnosis. In addition, experiments show that our approach has a smooth training process and good balance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时s完成签到,获得积分10
1秒前
yang发布了新的文献求助10
1秒前
小周完成签到,获得积分10
2秒前
2秒前
3秒前
ofha应助赫连涵柏采纳,获得10
4秒前
七七发布了新的文献求助10
4秒前
土豆完成签到,获得积分20
4秒前
大个应助wfkjxywdq采纳,获得10
4秒前
5秒前
5秒前
木木完成签到,获得积分20
5秒前
fanfan发布了新的文献求助10
5秒前
卡卡发布了新的文献求助10
6秒前
6秒前
宇圆少女科研版完成签到,获得积分10
7秒前
赘婿应助wwz采纳,获得10
7秒前
xutingfeng完成签到,获得积分10
7秒前
繁星背后发布了新的文献求助10
8秒前
木木发布了新的文献求助10
8秒前
烟花应助如果课题会讲话采纳,获得10
8秒前
9秒前
归尘发布了新的文献求助10
9秒前
9秒前
10秒前
Lucas应助蓝胖子采纳,获得10
10秒前
黄辉冯发布了新的文献求助10
10秒前
zhou完成签到,获得积分10
11秒前
搜集达人应助yang采纳,获得10
11秒前
11秒前
猪猪hero应助元谷雪采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
白菜完成签到,获得积分10
12秒前
脑洞疼应助科研通管家采纳,获得30
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259688
求助须知:如何正确求助?哪些是违规求助? 4421251
关于积分的说明 13762275
捐赠科研通 4295121
什么是DOI,文献DOI怎么找? 2356733
邀请新用户注册赠送积分活动 1353120
关于科研通互助平台的介绍 1314279