已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

T Cell Immune Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications

算法 计算机科学 启发式 人口 过程(计算) 约束(计算机辅助设计) 人工智能 工程类 机械工程 操作系统 社会学 人口学
作者
Hongzhi Zhang,Yong Zhang,Yixing Niu,Kai He,Yukun Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 95545-95566 被引量:9
标识
DOI:10.1109/access.2023.3311271
摘要

In this paper, inspired by the T cell immune process, a new meta-heuristic algorithm named T cell immune algorithm (TCIA) is proposed to better solve various complex practical problems. The core difficulty of meta-heuristic algorithms is balancing exploration and exploitation. TCIA mimics the behavior of T-cell immune process in recognizing antigens, activating cells and attacking pathogens, thus to better balance exploration and exploitation. Recognition is the process of judging the cell concentration at the current location, which is used to evaluate the fitness value of the current cell. Activation is the process by which T cells are activated and thus differentiate into multiple cells, helping the population to explore on a larger scope. Attacks are divided into random attack and directed attack. Random attack helps the population escape from local optima by randomly selecting a target cell to attack. Targeted attacks push the overall approach to the location with the highest concentration of target cells, which makes better use of the global optimal solution. The TCIA is tested on CEC2022 and compared with other 10 algorithms. Experimental results and statistical analysis show that TCIA is more effective than other 10 classical and new meta-heuristic algorithms in solving constraint function problems. TCIA is tested on three multi-objective functions, which verifies its good ability in solving multi-objective functions. Two classical engineering design problems are applied to verify the ability of TCIA to solve practical problems. The parameters of Back propagation neural network are optimized by TCIA to predict the compressive strength of concrete. The results show that the ability of TCIA to solve a variety of problems is balanced and excellent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuanyuan发布了新的文献求助10
刚刚
研友_ngX12Z完成签到,获得积分10
2秒前
hlq完成签到 ,获得积分10
7秒前
橘子海完成签到 ,获得积分10
13秒前
医研完成签到 ,获得积分10
14秒前
suxili完成签到 ,获得积分10
18秒前
完美世界应助gaijiaofanv采纳,获得10
19秒前
Carmen完成签到 ,获得积分10
22秒前
22秒前
joshar发布了新的文献求助10
22秒前
liao完成签到 ,获得积分10
23秒前
23秒前
Forever完成签到 ,获得积分10
23秒前
27秒前
sunnn完成签到 ,获得积分10
29秒前
gaijiaofanv发布了新的文献求助10
30秒前
Lucas应助ex_ritian采纳,获得10
31秒前
31秒前
温暖听安完成签到 ,获得积分10
33秒前
会撒娇的金毛完成签到,获得积分20
36秒前
vvvvba0202发布了新的文献求助10
37秒前
fisher完成签到 ,获得积分10
37秒前
揽揽小高完成签到 ,获得积分10
39秒前
fyp发布了新的文献求助10
43秒前
谢谢给清脆靳的求助进行了留言
44秒前
旺旺完成签到,获得积分10
46秒前
小蘑菇应助syzotwo采纳,获得20
52秒前
Murphy完成签到 ,获得积分10
53秒前
53秒前
xy关注了科研通微信公众号
57秒前
1分钟前
bkagyin应助热情墨镜采纳,获得10
1分钟前
ex_ritian发布了新的文献求助10
1分钟前
1分钟前
ex_ritian完成签到,获得积分10
1分钟前
xy发布了新的文献求助10
1分钟前
幽默的志泽完成签到,获得积分10
1分钟前
seven发布了新的文献求助20
1分钟前
情怀应助fyp采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561167
求助须知:如何正确求助?哪些是违规求助? 4646320
关于积分的说明 14678320
捐赠科研通 4587573
什么是DOI,文献DOI怎么找? 2517149
邀请新用户注册赠送积分活动 1490439
关于科研通互助平台的介绍 1461340