Promoting photothermal catalytic CO2 reduction of Cd2In2S5/Cd0.3Zn0.7S heterojunction with encapsulated hydrogen evolution active site by accelerating charge transfer kinetics

异质结 催化作用 吸附 材料科学 电子转移 化学 载流子 化学工程 光化学 化学物理 物理化学 光电子学 有机化学 工程类
作者
Hongliang He,Xiangbo Zhao,Xuan Jian,Hao Zhang,Tao Zeng,Bo Feng,Yanan Hu,Zhongqiang Yuan,Xiaoming Gao,Feng Feng
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:476: 146442-146442 被引量:1
标识
DOI:10.1016/j.cej.2023.146442
摘要

The photothermal catalysis CO2 reduction is considered as an attractive means to solve the greenhouse effect and energy crisis. However, due to the slow charge transfer kinetics on the surface of the catalyst and sparse adsorption active site, the CO2 adsorption rate is low and the carrier life is short. So, the catalytic performance is limited. Here, a core–shell similar structure catalyst for photothermal CO2 reduction was constructed by growing of Cd0.3Zn0.7S (CZS) nanospheres on the surface of sulfur defect rich Cd2In2S5 (CIS) ultra-thin nanosheets, and which was coordinated by the interfacial chemical bond and the interfacial internal electric field. The Cd-S chemical bond became a direct channel to accelerate the transfer of electrons from the conduction band of CZS to the conduction band of CIS, leading to higher surface charge localization of CIS/CZS, and encapsulating the active site of hydrogen evolution of CZS. The core–shell similar structure was favorable for the spatial separation of photogenerated charges. The production of *HCO3– and *COOH intermediates on the CIS/CZS surface has been proved to be crucial for CO2 adsorption and CO generation by in situ Fourier transform infrared spectroscopy. The charge transfer mechanism of Type Ⅱ between CIS and CZS was proved by density functional theory calculation and in situ X-ray photoelectron spectroscopy. The CO yield of the optimized CIS/CZS heterojunction was 64.3 μmol·h−1·g−1, which was about 31.3 times that of pure CZS. This study provided a new idea for accelerating charge transfer dynamics and inhibiting competition reaction to promote the conversion of solar energy to fuel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ju00发布了新的文献求助10
刚刚
芮rich完成签到,获得积分10
刚刚
CUPLPhD完成签到,获得积分10
1秒前
chunchun完成签到,获得积分10
1秒前
Kamal完成签到,获得积分10
2秒前
CG2021发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Cheny完成签到 ,获得积分10
3秒前
个性的紫菜应助huanir99采纳,获得10
3秒前
shinysparrow应助无畏采纳,获得10
4秒前
4秒前
Hello应助24采纳,获得10
6秒前
Cochane发布了新的文献求助10
6秒前
善良的冷梅完成签到,获得积分10
6秒前
傅荣轩完成签到,获得积分10
7秒前
bingchem发布了新的文献求助10
7秒前
8秒前
科目三应助lkd采纳,获得10
9秒前
蛋壳柯完成签到,获得积分10
9秒前
zxt完成签到,获得积分10
11秒前
在水一方应助愤怒的故事采纳,获得10
12秒前
蛋壳柯发布了新的文献求助10
12秒前
翟大有完成签到 ,获得积分0
12秒前
无名完成签到,获得积分10
13秒前
鲸鱼不是鱼完成签到,获得积分10
14秒前
Flo完成签到,获得积分10
15秒前
nanonamo完成签到,获得积分10
16秒前
xiaoxiao完成签到 ,获得积分10
16秒前
黎洛洛完成签到 ,获得积分10
17秒前
17秒前
17秒前
wxnice完成签到,获得积分10
18秒前
研友_ngK9rn完成签到,获得积分10
18秒前
18秒前
赘婿应助云海老采纳,获得10
18秒前
英勇绮南完成签到,获得积分10
18秒前
考研大拿完成签到,获得积分20
19秒前
wangleli完成签到 ,获得积分20
20秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2413352
求助须知:如何正确求助?哪些是违规求助? 2107189
关于积分的说明 5325579
捐赠科研通 1834559
什么是DOI,文献DOI怎么找? 914082
版权声明 560992
科研通“疑难数据库(出版商)”最低求助积分说明 488793