Ultrasensitive metasurface-based sensors for fingerprint spectra extraction of L-glutamate at ultra-low concentration

太赫兹辐射 诺共振 指纹(计算) 材料科学 生物分子 光谱学 吸收(声学) 红外光谱学 表征(材料科学) 太赫兹光谱与技术 光学 近红外光谱 灵敏度(控制系统) 光电子学 分析化学(期刊) 等离子体子 纳米技术 计算机科学 化学 物理 电子工程 人工智能 色谱法 工程类 量子力学 复合材料 有机化学
作者
Yujia Wang,Jing Zhang,Maoyun Wang,Guoquan Song,Bin Zhang,Bing Wei,Zhaofu Ma,Yin Zhang⋆,Jing Lou,Qi Chen
出处
期刊:Optics Communications [Elsevier BV]
卷期号:550: 130005-130005 被引量:3
标识
DOI:10.1016/j.optcom.2023.130005
摘要

Terahertz-infrared (THz-infrared) absorption spectroscopy comprises distinctive spectroscopic data that serves as a potent method for the detection and analysis of biomolecules, owing to its capability to capture unique fingerprint spectral patterns associated with different structural substances. Nonetheless, the extraction of molecular characterization data with utmost sensitivity for substances present in low concentrations remains a formidable task that necessitates resolution, especially for the micro detection of neurotransmitters such as L-glutamate intricately linked to neurological disorders. Here, we construct Fano resonant modes with strong near-field by breaking the symmetry of the metallic split ring in the meta-atom, benefiting the susceptible substance detection. By scaling the structural parameters, a metasurface-based sensor working at the range of 1.15 to 2.69 THz was fabricated, which consisted of 15 metasurfaces operating at different resonance frequencies. And in agreement with results obtained by typical transmission absorption spectroscopy analysis of 0.1 mg tablets, the molecular fingerprint information of L-glutamate has been experimentally identified by comparing the resonance intensity changes with/without covering 5μg of L-glutamate, implying an increased detection sensitivity to 1/20. the proposed metasurface-based sensors with broadband Fano resonances are deemed to provide a new paradigm for enabling low-concentration, easy-to-use, and label-free biomolecule research and promise to drive the development of integrated non-destructive testing medical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PSCs完成签到,获得积分10
1秒前
1秒前
Wd发布了新的文献求助10
1秒前
仙女完成签到 ,获得积分10
2秒前
薛婧旌完成签到,获得积分10
2秒前
3秒前
SC完成签到 ,获得积分10
3秒前
跳脚的虾完成签到 ,获得积分10
7秒前
xr完成签到 ,获得积分10
7秒前
silin完成签到,获得积分10
9秒前
ran完成签到 ,获得积分10
9秒前
9秒前
大知闲闲完成签到 ,获得积分10
10秒前
转山转水转出了自我完成签到,获得积分10
11秒前
g7001完成签到,获得积分10
13秒前
ALLon完成签到 ,获得积分10
13秒前
六步郎完成签到,获得积分10
13秒前
乾雨发布了新的文献求助10
13秒前
努力向前看完成签到,获得积分10
13秒前
chai完成签到,获得积分10
16秒前
123456完成签到,获得积分10
16秒前
李爱国应助无限的含羞草采纳,获得10
16秒前
高高的远山完成签到,获得积分10
17秒前
qzp完成签到 ,获得积分10
18秒前
梅川秋裤完成签到,获得积分10
19秒前
liuzm完成签到,获得积分10
21秒前
Kevin发布了新的文献求助10
21秒前
hellzhu完成签到,获得积分10
22秒前
张张完成签到,获得积分10
22秒前
Nan发布了新的文献求助10
23秒前
小伙子完成签到,获得积分0
24秒前
26秒前
沫柠完成签到 ,获得积分10
26秒前
大胆天磊完成签到 ,获得积分10
27秒前
27秒前
28秒前
cdercder应助积极er采纳,获得10
29秒前
斯寜应助江桥采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
31秒前
雪凝清霜应助科研通管家采纳,获得10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379741
关于积分的说明 10510291
捐赠科研通 3099357
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615