趋同(经济学)
气候变化
计算机科学
过程(计算)
卫星
气象学
机器学习
环境科学
人工智能
气候学
水文学(农业)
地理
工程类
地质学
操作系统
海洋学
航空航天工程
经济增长
经济
岩土工程
作者
Christopher E. Ndehedehe
出处
期刊:Springer climate
日期:2023-01-01
卷期号:: 325-359
标识
DOI:10.1007/978-3-031-37727-3_9
摘要
The existing gaps (or some missing monthly observations) in the Gravity Recovery and Climate Experiment (GRACE) data limit its use in climate change studies. Data gaps provide an opportunity to reconstruct the time series of GRACE-derived terrestrial water storage (TWS) product or extend it backward to favor climate change assessments. To address this limitation, the use of machine learning models to reconstruct GRACE data is gradually emerging, emphasizing the importance of accurately filling these data gaps. This chapter demonstrates the utility of an integrated machine learning technique that shows faster convergence rates, finer predictions, and more efficient reconstructive properties for non-linear systems. By exemplifying the reconstruction process of TWS using this technique, this chapter discusses how the reconstruction of GRACE data can help improve understanding of the influence of climate variability on terrestrial hydrology.
科研通智能强力驱动
Strongly Powered by AbleSci AI